Support vector machines for interval discriminant analysis
Tài liệu tham khảo
H.H. Bock, Analysis of Symbolic Data: Exploratory Methods for Extracting Statistical Information from Complex Data, Springer, New York, Secaucus, NJ, USA, 2000.
Cristianini, 2000
Do, 2005, Kernel methods and visualization for interval data mining, 345
G. Fung, O.L. Mangasarian, J. Shavlik, Knowledge-based support vector machine classifiers, Technical Report 01-09, Data Mining Institute, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin, November 2001.
Fung, 2003, Knowledge-based support vector machine classifiers, vol. 15, 521
L. González, F. Velasco, F. Cuberos, J.A. Ortega, C. Angulo, A kernel to use with a discretization of continuous features, in: Proceedings of Learning’04, Elche, Spain, 2004.
González, 2006, Dual unification of bi-class support vector machine formulations, Pattern Recognition, 39, 1325, 10.1016/j.patcog.2006.01.007
L. Gonzalez-Abril, C. Angulo, F. Velasco, J. Ortega, A note on the bias in SVMs for multi-classification, IEEE Trans. on Neural Networks, accepted for publication, doi:10.1109/TNN.2007.914138.
Hansen, 1992
Hebrich, 2002
Hong, 2005, Interval regression analysis using quadratic loss support vector machine, IEEE Trans. Fuzzy Systems, 13, 229, 10.1109/TFUZZ.2004.840133
Hwang, 2006, Support vector interval regression machine for crisp input and output data, Fuzzy Sets and Systems, 157, 1114, 10.1016/j.fss.2005.09.008
Jaulin, 2001
Kreinovich, 2006, Towards real world applications: interval-related talks at nafips’05, Reliable Comput., 12, 73, 10.1007/s11155-006-2970-y
Mangasarian, 1994
T. Martinetz, K. Schulten, A “neural gas” network learns topologies, Artificial Neural Networks, Elsevier, Amsterdam, 1991, pp. 397–402.
Moore, 1966
C.B.D.J. Newman, S. Hettich, C. Merz, UCI repository of machine learning databases 〈http://www.ics.uci.edu/∼mlearn/MLRepository.html〉.
P. Nivlet, F. Fournier, J. Royer, Interval discriminant analysis: an efficient method to integrate errors in supervised pattern recognition, in: 2nd International Symposium on Imprecise Probabilities and their Applications, 2001.
Ohta, 2000, Nonconvex polygon interval arithmetic as a tool for the analysis and design of robust control systems, Reliable Comput., 6, 247, 10.1023/A:1009926413485
Palumbo, 2006, Editorial, Comput. Stat., 21, 183, 10.1007/s00180-006-0258-7
S. Pikorski, L. Lacassagne, M. Kieffer, D. Etiemble, Efficient 16-bit floating point interval processor for embedded systems and applications, in: 12th GAMM-IMACS International Symposium on Scientific Computing, Computer Arithmetic and Validated Numerics, 2006.
X. Rovira, N. Agell, M. Sánchez, F. Prats, X. Parra, An approach to qualitative radial basis function networks over orders of magnitude, in: Proceedings of the 18th International Workshop on Qualitative Reasoning (QR’04), Evanston, Illinois, USA, 2004.
F.J. Ruiz, N. Agell, C. Angulo, A kernel intersection defined on intervals, in: Recent Advances in Artificial Intelligence Research and Development, vol. 113, in: Frontiers in Artificial Intelligence and Applications, IOS Press, 2004, pp. 103–110.
Tanaka, 1998, Interval regression analysis by quadratic programming approach, IEEE Trans. Fuzzy Systems, 6, 473, 10.1109/91.728436
G.G. Towell, J.W. Shavlik, M.O. Noordenier, Refinement of Approximate Domain Theories by Knowledge Based Neural Network, vol. 2, 1990, pp. 861–866.
Vapnik, 1998
Y. Zhao, Q. Chen, Q. He, An interval set classification based on support vector machines, in: Proceedings of the Joint International Conference on Autonomic and Autonomous Systems 2005/International Conference on Networking and Services 2005 (ICAS/ICNS 2005), IEEE Computer Society, Papeete, Tahiti, 2005, pp. 81–86.