Supply chain network design under uncertainty with new insights from contracts
Tóm tắt
Từ khóa
Tài liệu tham khảo
Badri, H., Bashiri, M., Hejazi, T.H., 2013. Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method. Comput. Oper. Res., 40(4):1143–1154. [doi:10.1016/j.cor.2012.11.005]
Correia, I., Melo, T., Saldanha-da-Gama, F., 2013. Comparing classical performance measures for a multi-period, two-echelon supply chain network design problem with sizing decisions. Comput. Ind. Eng., 64(1):366–380. [doi:10. 1016/j.cie.2012.11.001]
Das, K., 2011. Integrating effective flexibility measures into a strategic supply chain planning model. Eur. J. Oper. Res., 211(1):170–183. [doi:10.1016/j.ejor.2010.12.006]
Feng, Y., Martel, A., D’Amours, S., et al., 2013. Coordinated contract decisions in a make-to-order manufacturing supply chain: a stochastic programming approach. Prod. Oper. Manag., 22(3):642–660. [doi:10.1111/j.1937-5956.2012.01385.x]
Georgiadis, M.C., Tsiakis, P., Longinidis, P., et al., 2011. Optimal design of supply chain networks under uncertain transient demand variations. Omega, 39(3):254–272. [doi:10.1016/j.omega.2010.07.002]
Goetschalckx, M., Huang, E., Mital, P., 2013. Trading off supply chain risk and efficiency through supply chain design. Procedia Comput. Sci., 16:658–667. [doi:10.1016/j.procs.2013.01.069]
Goldratt, E.M., Fox, R.E., 1996. The Race. North River Press.
Kamath, K.R., Pakkala, T.P.M., 2002. A Bayesian approach to a dynamic inventory model under an unknown demand distribution. Comput. Oper. Res., 29(4):403–422. [doi:10. 1016/S0305-0548(00)00075-7]
Melo, M.T., Nickel, S., Saldanha-da-Gama, F., 2009. Facility location and supply chain management—a review. Eur. J. Oper. Res., 196(2):401–412. [doi:10.1016/j.ejor.2008.05.007]
Nagurney, A., 2010. Optimal supply chain network design and redesign at minimal total cost and with demand satisfaction. Int. J. Prod. Econ., 128(1):200–208. [doi:10.1016/j.ijpe.2010.07.020]
Noyan, N., 2012. Risk-averse two-stage stochastic programming with an application to disaster management. Comput. Oper. Res., 39(3):541–559. [doi:10.1016/j.cor.2011.03.017]
Paksoy, T., Özceylan, E., Weber, G.W., 2013. Profit oriented supply chain network optimization. Cent. Eur. J. Oper. Res., 21(2):455–478. [doi:10.1007/s10100-012-0240-0]
Pan, F., Nagi, R., 2010. Robust supply chain design under uncertain demand in agile manufacturing. Comput. Oper. Res., 37(4):668–683. [doi:10.1016/j.cor.2009.06.017]
Rajgopal, J., Wang, Z., Schaefer, A.J., et al., 2011. Integrated design and operation of remnant inventory supply chains under uncertainty. Eur. J. Oper. Res., 214(2):358–364. [doi:10.1016/j.ejor.2011.04.039]
Rockafellar, R.T., Uryasev, S., 2000. Optimization of conditional value-at-risk. J. Risk, 2(3):21–42.
Santoso, T., 2003. A Comprehensive Model and Efficient Solution Algorithm for the Design of Global Supply Chains Under Uncertainty. PhD Thesis, Georgia Institute of Technology, USA.
Santoso, T., Ahmed, S., Goetschalckx, M., et al., 2005. A stochastic programming approach for supply chain network design under uncertainty. Eur. J. Oper. Res., 167(1):96–115. [doi:10.1016/j.ejor.2004.01.046]
Shapiro, A., Homem-de-Mello, T., 1998. A simulation-based approach to two-stage stochastic programming with recourse. Math. Program., 81(3):301–325. [doi:10.1007/BF01580086]
Simchi-Levi, D., Kaminsky, P., Simchi-Levi, E., 2007. Designing and Managing the Supply Chain: Concepts, Strategies, and Case Studies (3rd Ed.). McGraw-Hill International Edition, USA.
Tabrizi, B.H., Razmi, J., 2013. Introducing a mixed-integer non-linear fuzzy model for risk management in designing supply chain networks. J. Manuf. Syst., 32(2):295–307. [doi:10.1016/j.jmsy.2012.12.001]
Thanh, P.N., Péton, O., Bostel, N., 2010. A linear relaxation-based heuristic approach for logistics network design. Comput. Ind. Eng., 59(4):964–975. [doi:10.1016/j.cie.2010.09.007]
Tiwari, M.K., Raghavendra, N., Agrawal, S., et al., 2010. A hybrid taguchi-immune approach to optimize an integrated supply chain design problem with multiple shipping. Eur. J. Oper. Res., 203(1):95–106. [doi:10.1016/j.ejor.2009.07.004]
Wang, W., 2007. Sample Average Approximation of Risk-Averse Stochastic Programs. PhD Thesis, Georgia Institute of Technology, USA.
Wever, M., Wognum, P.M., Trienekens, J.H., et al., 2012. Supply chain-wide consequences of transaction risks and their contractual solutions: towards an extended transaction cost economics framework. J. Supply Chain Manag., 48(1):73–91. [doi:10.1111/j.1745-493X.2011.03253.x]