Supersymmetric Polar Coordinates with Applications to the Lloyd Model

Springer Science and Business Media LLC - Tập 23 Số 1 - Trang 1-21 - 2020
Disertori, Margherita1, Lager, Mareike1
1Institute for Applied Mathematics & Hausdorff Center for Mathematics, University of Bonn, Bonn, Germany

Tóm tắt

Spectral properties of random Schrödinger operators are encoded in the average of products of Greens functions. For probability distributions with enough finite moments, the supersymmetric approach offers a useful dual representation. Here we use supersymmetric polar coordinates to derive a dual representation that holds for general distributions. We apply this result to study the density of states of the linearly correlated Lloyd model. In the case of non-negative correlation, we recover the well-known exact formula. In the case of linear small negative interaction localized around one point, we show that the density of states is well approximated by the exact formula. Our results hold on the lattice $\mathbb {Z}^{d}$ uniformly in the volume.

Tài liệu tham khảo

citation_journal_title=Phys. Rev.; citation_title=Absence of diffusion in certain random lattices; citation_author=PW Anderson; citation_volume=109; citation_publication_date=1958; citation_pages=1492-1505; citation_doi=10.1103/PhysRev.109.1492; citation_id=CR1 Aizenman, M., Warzel, S.: Random operators, volume 168 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI. Disorder effects on quantum spectra and dynamics (2015) Berezin, F.A.: Introduction to superanalysis. Math. Phys. Appl. Math. 9. Reidel, Dordrecht (1987) citation_journal_title=J. Stat. Phys.; citation_title=The density of states in the Anderson model at weak disorder: a renormalization group analysis of the hierarchical model; citation_author=A Bovier; citation_volume=59; citation_issue=3-4; citation_publication_date=1990; citation_pages=745-779; citation_doi=10.1007/BF01025849; citation_id=CR4 citation_journal_title=Commun. Math. Phys.; citation_title=A supersymmetric transfer matrix and differentiability of the density of states in the one-dimensional anderson model; citation_author=M Campanino, A Klein; citation_volume=104; citation_issue=2; citation_publication_date=1986; citation_pages=227-241; citation_doi=10.1007/BF01211591; citation_id=CR5 citation_title=Supermanifolds. Cambridge monographs on mathematical physics; citation_publication_date=1992; citation_id=CR6; citation_author=BS DeWitt; citation_publisher=Cambridge University Press citation_title=Supersymmetry in disorder and chaos; citation_publication_date=1999; citation_id=CR7; citation_author=K Efetov; citation_publisher=Cambridge University Press citation_journal_title=Commun. Math. Phys.; citation_title=A rigorous replica trick approach to anderson localization in one dimension; citation_author=A Klein, F Martinelli, JF Perez; citation_volume=106; citation_issue=4; citation_publication_date=1986; citation_pages=623-633; citation_doi=10.1007/BF01463399; citation_id=CR8 Lloyd, P.: Exactly solvable model of electronic states in a three-dimensional disordered Hamiltonian: non-existence of localized states. Journal of Physics C: Solid State Physics (1969) Simon, B.: Equality of the density of states in a wide class of tight-binding Lorentzian random models. Phys. Rev. B (1983) Varadarajan, V.S.: Supersymmetry for mathematicians: an introduction, volume 11 of Courant Lecture Notes in Mathematics. New York University, Courant Institute of Mathematical Sciences, New York, American Mathematical Society, Providence, RI (2004) citation_journal_title=Inventiones Mathematicae; citation_title=Localization and universality of poisson statistics for the multidimensional anderson model at weak disorder; citation_author=W-M Wang; citation_volume=146; citation_issue=2; citation_publication_date=2001; citation_pages=365-398; citation_doi=10.1007/s002220100169; citation_id=CR12 Wegner, F.: Supermathematics and its applications in statistical physics: Grassmann variables and the method of supersymmetry. Lecture notes in Physics; 920, vol. 920. Springer, New York (2016)