Superposition operators between normal weight bloch spaces

Springer Science and Business Media LLC - Tập 202 - Trang 637-653 - 2023
Pengcheng Tang1
1School of Mathematics and Computational Science, Hunan University of Science and Technology, Xiangtan, China

Tóm tắt

Let $$\varphi $$ be an entire function, the superposition operator is defined by $$S_{\varphi }(f)=\varphi \circ f$$ . In this paper, we characterize the entire functions $$\varphi $$ that transform weighted Bloch spaces of analytic functions $${\mathcal {B}}_{\mu }$$ into another space of the same kind $${\mathcal {B}}_{\nu }$$ by superposition. Both $$\mu $$ and $$\nu $$ are normal functions or both belong to a certain class of functions. We also obtain several results about the boundedness of superposition operators acting between Logarithmic-type Bloch spaces, weight Banach spaces among others.

Tài liệu tham khảo

Appell, J., Zabrejko, P.: Nonlinear Superposition Operators. Cambridge University Press, Cambridge (1990) Cámera, G., Giménez, J.: Nonlinear superposition operators acting on Bergman spaces. Compos. Math. 93, 23–35 (1994) Cámera, G.: Nonlinear superposition on spaces of analytic functions, In: Marcantognini, S.A.M., Mendoza, G.A., Morán, M.D., Octavio, A., Urbina, W.O. (eds.) Harmonic Analysis and Operator Theory, Contemporary Mathematics, vol. 189, pp. 103–116 (1995) Buckley, S., Fernández, J., Vukotić, D.: Superposition operators on Dirichlet type spaces. Rep. Univ. Jyväskylä. 83, 41–61 (2001) Álvarez, V., Márquez, M., Vukotić, D.: Superposition operators between the Bloch space and Bergman spaces. Ark. Mat. 42, 205–216 (2004) Xiong, C.: Superposition operators between \({Q}_{p}\) spaces and Bloch-type spaces. Complex Var. Theory Appl. 50, 935–938 (2005) Buckley, S., Vukotić, D.: Univalent interpolation in Besov spaces and superposition into Bergman spaces. Potential Anal. 29, 1–16 (2008) Xu, W.: Superposition operators on Bloch-type spaces. Comput. Methods Funct. Theory 7, 501–507 (2007) Girela, D., Márquez, M.: Superposition operators between \({Q}_{p}\) spaces and Hardy spaces. J. Math. Anal. Appl. 364, 463–472 (2010) Castillo, R., Fernández, J., Salazar, M.: Bounded superposition operators between Bloch-Orlicz and \(\alpha \)-Bloch spaces. Appl. Math. Comput. 218, 3441–3450 (2011) Galanopoulos, P., Girela, D., Márquez, M.: Superposition operators, Hardy spaces, and Dirichlet type spaces. J. Math. Anal. Appl. 463(2), 659–680 (2018) Liang, Y., Zhou, Z.: The nonlinear superposition operators between Zygmund-type and Bloch-type spaces. Mediterr. J. Math. 16(2), 39 (2019) Malavé-Malavé, R.J., Ramos-Fernández, J.C.: Superposition operators between logarithmic Bloch spaces. Rend. Circ. Mat. Palermo II Ser. 68(2), 105–121 (2018) Boyd, C., Rueda, P.: Holomorphic superposition operators between Banach function spaces. J. Aust. Math. Soc. 96(2), 186–197 (2013) Bonet, J., Vukotić, D.: Superposition operators between weighted Banach spaces of analytic functions of controlled growth. Monatsh. Math. 170(3–4), 311–323 (2013) Domínguez, S., Girela, D.: Sequences of zeros of analytic function spaces and weighted superposition operators. Monatsh. Math. 190(4), 725–734 (2019) Boyd, C., Rueda, P.: Superposition operators between weighted spaces of analytic functions. Quaest. Math. 36(3), 411–419 (2013) Anderson, J., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974) Wulan, H., Zhu, K.: Bloch and BMO functions in the unit ball. Complex Var. Elliptic Equ. 53(11), 1009–1019 (2008) Anderson, J., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974) Chen, H., Gauthier, P.: Composition operators on \(\mu \)-Bloch spaces. Can. J. Math. 61(1), 50–75 (2009) Ghatage, P., Zheng, D.: Analytic functions of bounded mean oscillation and the Bloch space. Integral Equ. Oper. Theory 17, 501–515 (1993) Madigan, K., Matheson, A.: Compact composition operators on the Bloch space. Trans. Am. Math. Soc. 347, 2679–3687 (1995) Zhu, K.: Bloch type spaces of analytic functions. Rocky Mt. J. Math. 23, 1143–1177 (1993) Zhu, K.: Operator theory in function spaces, Mathematical Surveys and Monographs, vol. 138. American Mathematical Society, Providence (2007) Pommerenke, C.: On Bloch functions. J. Lond. Math. Soc. 2(2), 689–695 (1970) Timoney, R.M.: Bloch functions in several complex variables. I. Bull. Lond. Math. Soc 12(4), 241–267 (1980) Timoney, R.M.: Bloch functions in several complex variables. II. J. Reine Angew. Math. 319, 1–22 (1980) Hu, Z.J.: Composition operators between Bloch-type spaces in the polydisc. Sci. China 48A(supp), 268–282 (2005) Zhang, X.J., Xu, S.: Weighted differentiation composition operators between normal weight Zygmund spaces and Bloch spaces in the unit ball of \({C}^{n}\) for \(n>1\). Complex Anal. Oper. Theory 13(3), 859–878 (2019) Abakumov, E., Doubtsov, E.: Reverse estimates in growth spaces. Math. Z. 271(2), 479–498 (2007) Shields, A.L., Williams, D.L.: Bounded projections and the growth of harmonic conjugates in the unit disc. Mich. Math. J. 29(1), 3–25 (1982) Levin, B.: Lectures on Entire Functions. American Mathematical Society, Providence, Translations of Mathematical Monographs (1996)