Superlenses to overcome the diffraction limit
Tóm tắt
Từ khóa
Tài liệu tham khảo
Veselago, V. G. The electrodynamics of substances with simultaneously negative values of ε and μ. Sov. Phys. Uspekhi-USSR 10, 509–514 (1968).
Pendry, J. B. et al. Extremely low frequency plasmons in metallic mesostructures. Phys. Rev. Lett. 76, 4773–4776 (1996).
Pendry, J. B. et al. Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans. Microwave Theory Tech. 47, 2075–2084 (1999).
Soukoulis, C. M., Linden, S. & Wegener, M. Negative refractive index at optical wavelengths. Science 315, 47–49 (2007).
Smith, D. R. et al. Composite medium with simultaneously negative permeability and permittivity. Phys. Rev. Lett. 84, 4184–4187 (2003).
Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).
Bayindir, M. et al. Transmission properties of composite metamaterials in free space. Appl. Phys. Lett. 81, 120–122 (2002).
Parazzoli, C. G. et al. Experimental verification and simulation of negative index of refraction using Snell's Law. Phys. Rev. Lett. 90, 107401 (2003).
Greegor, R. B., Parazzoli, C. G. & Tanielian, M. H. Origin of dissipative losses in negative index of refraction materials. Appl. Phys. Lett. 82, 2356–2358 (2003).
Smith, D. R. et al. Limitations on subdiffraction imaging with a negative refractive index slab. Appl. Phys. Lett. 82, 1506–1508 (2003).
Fang, N. & Zhang, X. Imaging properties of a metamaterial superlens. Appl. Phys. Lett. 82, 161–163 (2003).
Podolskiy, V. A. Optimizing the superlens: manipulating geometry to enhance the resolution. Appl. Phys. Lett. 87, 231113 (2005).
Liu, Z. et al. Rapid growth of evanescent wave with a silver superlens. Appl. Phys. Lett. 83, 5184–5186 (2003).
Fang, N., Liu, Z., Yen, T. J. & Zhang, X. Regenerating evanescent waves from a silver superlens. Opt. Express 11, 682–687 (2003).
Grbic, A. & Eleftheriades, G. V. Overcoming the diffraction limit with a planar left-handed transmission-line lens. Phys. Rev. Lett. 92, 117403 (2004).
Popa, B. I. & Cummer S. A. Direct measurement of evanescent wave enhancement inside passive metamaterials. Phys. Rev. E. 73, 016617 (2006).
Houck, A. A., Brock, J. B. & Chuang, I. L. Experimental observations of a left-handed material that obeys Snell's law. Phys. Rev. Lett. 90, 137401 (2003).
Lagarkov, A. N. & Kissel, V. N. Near-perfect imaging in a focusing system based on a left-handed-material plate. Phys. Rev. Lett. 92, 077401 (2004).
Fang, N. et al. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).
Lee, H. et al. Realization of optical superlens imaging below the diffraction limit. New J. Phys. 7, 255 (2005).
Melville, D. & Blaikie, R. Super-resolution imaging through a planar silver layer. Opt. Express 13, 2127–2134 (2005).
Shamonina, E. et al. Imaging, compression and Poynting vector streamlines for negative permittivity materials. Electron. Lett. 37, 1243–1244 (2001).
Belov, P. A. & Hao, Y. Subwavelength imaging at optical frequencies using a transmission device formed by a periodic layered metal-dielectric structure operating in the canalization regime. Phys. Rev. B 73, 113110 (2006).
Wood, B., Pendry, J. B. & Tsai, D. P. Directed subwavelength imaging using a layered metal–dielectric system. Phys. Rev. B 74, 115116 (2006).
Notomi, M. Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000).
Luo, C. et al. All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002).
Efros, A. L. & Pokrovsky, A. L. Dielectric photonic crystal as medium with negative electric permittivity and magnetic permeability. Solid State Commun. 129, 643–649 (2004).
Foteinopoulou, S. & Soukoulis, C. M. Negative refraction and left-handed behavior in two-dimensional photonic crystals. Phys. Rev. B 67, 235107 (2003).
Cubukcu, E. et al. Subwavelength resolution in a two-dimensional photonic-crystal-based superlens. Phys. Rev. Lett. 91, 207401 (2003).
Li, Z. Y. & Lin, L. L. Evaluation of lensing in photonic crystal slabs exhibiting negative refraction. Phys. Rev. B. 68, 245110 (2003).
Shvets, G. & Urzhumov, Y. A. Engineering the electromagnetic properties of periodic nanostructures using electrostatic resonance. Phys. Rev. Lett. 93, 243902 (2004).
Schonbrun, E. et al. Wave front evolution of negatively refracted waves in a photonic crystal. Appl. Phys. Lett. 90, 041113 (2007).
Durant, S. et al. Theory of the transmission properties of an optical far-field superlens for imaging beyond the diffraction limit. J. Opt. Soc. Am. B 23, 2383–2392 (2006).
Liu, Z. et al. Experimental studies of far-field superlens for sub-diffractional optical imaging. Opt. Express 15, 6947–6954 (2007).
Xiong, Y. et al. Tuning the far-field superlens: from UV to visible. Opt. Express 15, 7095–7102 (2007).
Xiong, Y., Liu, Z., Sun, C. & Xiang, X. Two-dimensional imaging by far-field superlens at visible wavelengths. Nano Lett. 7, 3360–3365 (2007).
Jacob, Z., Alekseyev, L. V. & Narimanov, E. Optical hyperlens: far-field imaging beyond the diffraction limit. Opt. Express 14, 8247–8256 (2006).
Salandrino, A. & Engheta, N. Far-field subdiffraction optical microscopy using metamaterial crystals: theory and simulations. Phys. Rev. B 74, 075103 (2006).
Lee, H. et al. Development of optical hyperlens for imaging below the diffraction limit. Opt. Express. 15, 15886–15891 (2007).
Pendry, J. B. & Ramakrishna, S. A. Near-field lenses in two dimensions. J. Phys. Condens. Matter 14, 8463–8479 (2002).
Liu, Z. et al. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 315, 1686 (2007).
Smolyaninov, I. I., Huang, Y. J. & Davis, C. C. Magnifying superlens in the visible frequency range. Science 315, 1699–1701 (2007).
Drezet, A., Hohenau, A. & Krenn, J. R. Comment on “Far-field optical microscopy with a nanometer-scale resolution based on the in-plane image magnification by surface plasmon polaritons”. Phys. Rev. Lett. 98, 209730 (2007).
Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).
Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).
Dolling, G. et al. Simultaneous negative phase and group velocity of light in a metamaterial. Science 312, 892–894 (2006).
Grigorenko, A. N. et al. Nanofabricated media with negative permeability at visible frequencies. Nature 438, 335–338 (2005).
Grigorenko, A. Negative refractive index in artificial metamaterials. Opt. Lett. 31, 2483–2485 (2006).
Ambati, M. et al. Surface resonant states and superlensing in acoustic metamaterials. Phys. Rev. B 75, 195447 (2007).
Lu, M. et al. Negative birefraction of acoustic waves in a sonic crystal. Nature Mater. 6, 744–748 (2007).
Christensen, J. Collimation of sound assisted by acoustic surface waves. Nature Phys. 3, 851–852 (2007).