Superlattice-like structure and enhanced ferroelectric properties of intergrowth Aurivillius oxides

RSC Advances - Tập 8 Số 30 - Trang 16937-16946
He Yang1,2,3,4,5, Zezhi Chen1,2,3,4,5, Ranran Peng1,3,4,6,5, Haoliang Huang1,3,4,6,5, Zhengping Fu1,3,4,6,5, Xiaofang Zhai3,7,4,6,5, Yalin Lü1,3,7,4,6
1CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
2Department of Materials Science and Engineering
3Hefei 230026
4P. R. China
5University of Science and Technology of China
6Synergetic Innovation Center of Quantum Information & Quantum Physics, Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, P. R. China
7National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230026, P. R. China

Tóm tắt

Aurivillius oxides with an intergrowth structures have been receiving increasing interest because of their special structures and potential outstanding ferroelectric properties.

Từ khóa


Tài liệu tham khảo

Moritomo, 1996, Nature, 380, 141, 10.1038/380141a0

Mandal, 2015, Nature, 525, 363, 10.1038/nature14881

Fiebig, 2005, J. Phys. D: Appl. Phys., 38, R123, 10.1088/0022-3727/38/8/R01

Garcia-Castro, 2016, Phys. Rev. Lett., 116, 117202, 10.1103/PhysRevLett.116.117202

Ikegami, 1974, Jpn. J. Appl. Phys., 13, 1572, 10.1143/JJAP.13.1572

Yadav, 2016, Nature, 530, 198, 10.1038/nature16463

Zhang, 2011, J. Am. Ceram. Soc., 94, 3153, 10.1111/j.1551-2916.2011.04792.x

Singh, 1994, Solid State Commun., 91, 567, 10.1016/0038-1098(94)90376-X

Krzhizhanovskaya, 2005, Z. Anorg. Allg. Chem., 631, 1603, 10.1002/zaac.200500130

Mao, 2009, Appl. Phys. Lett., 95, 082901, 10.1063/1.3213344

Wang, 2015, Mater. Horiz., 2, 232, 10.1039/C4MH00202D

Li, 2014, J. Mater. Chem. A, 2, 13366, 10.1039/C4TA01799D

Aurivillius, 1949, Ark. Kemi, 1, 463

Sun, 2014, Nanoscale, 6, 13494, 10.1039/C4NR03542A

Wang, 2017, Nanoscale, 9, 8305, 10.1039/C7NR02156A

Zhu, 2003, Jpn. J. Appl. Phys., 42, 5165, 10.1143/JJAP.42.5165

Mercurio, 2000, Int. J. Inorg. Mater., 2, 397, 10.1016/S1466-6049(00)00090-8

Yi, 2006, J. Appl. Phys., 99, 114101, 10.1063/1.2199751

Yi, 2005, Appl. Phys. Lett., 86, 192906, 10.1063/1.1925760

Ismailzade, 1967, Soviet Physics - Crystallography, 12, 400

Nakashima, 2010, J. Appl. Phys., 108, 074106, 10.1063/1.3491023

Gao, 2011, J. Mater. Sci., 46, 5423, 10.1007/s10853-011-5483-y

Ogawa, 2016, Ferroelectrics, 498, 1, 10.1080/00150193.2016.1166035

Tian, 2014, J. Inorg. Organomet. Polym. Mater., 24, 355, 10.1007/s10904-013-9971-1

Zou, 2014, J. Adv. Dielectr., 4, 1450028, 10.1142/S2010135X14500283

Zhang, 2010, J. Appl. Phys., 107, 104111, 10.1063/1.3380847

Choi, 2004, Science, 306, 1005, 10.1126/science.1103218

Junquera, 2003, Nature, 422, 506, 10.1038/nature01501

Martin, 2016, Nat. Rev. Mater., 2, 16087, 10.1038/natrevmats.2016.87

Kojima, 1994, Jpn. J. Appl. Phys., 33, 5559, 10.1143/JJAP.33.5559

Graves, 1995, J. Solid State Chem., 114, 112, 10.1006/jssc.1995.1017

Du, 2002, Solid State Commun., 124, 113, 10.1016/S0038-1098(02)00493-3

Yang, 2012, Appl. Phys. Lett., 101, 012402, 10.1063/1.4732526

Srinivas, 1999, Mater. Res. Bull., 34, 989, 10.1016/S0025-5408(99)00093-8

Moure, 2005, J. Appl. Phys., 97, 084103, 10.1063/1.1865313

Mao, 2012, J. Mater. Sci., 47, 2960, 10.1007/s10853-011-6129-9

Zuo, 2017, J. Alloys Compd., 726, 1040, 10.1016/j.jallcom.2017.08.077