Superhard superstrong carbon clathrate
Tài liệu tham khảo
Heimann, 1997, Carbon allotropes: a suggested classification scheme based on valence orbital hybridization, Carbon, 35, 1654, 10.1016/S0008-6223(97)82794-7
Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0
Ekimov, 2004, Superconductivity in diamond, Nature, 428, 542, 10.1038/nature02449
Meyer, 2007, The structure of suspended graphene sheets, Nature, 446, 60, 10.1038/nature05545
Wang, 2005, Carbon phase diagram fromAb initiomolecular dynamics, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.185701
Benedek, 1995, Hallow diamonds: stability and elastic properties, Chem. Phys. Lett., 244, 339, 10.1016/0009-2614(95)00946-2
Herrmann, 1999, Electronic structure of Si and Ge gold-doped clathrates, Phys. Rev. B, 60, 13245, 10.1103/PhysRevB.60.13245
Kasper, 1965, Clathrate structure of silicon Na8Si46 and NaxSi136 (x< 11), Science, 150, 1713, 10.1126/science.150.3704.1713
San-Miguel, 2006, Nanomaterials under high-pressure, Chem. Soc. Rev., 35, 876, 10.1039/b517779k
Guloy, 2006, A guest-free germanium clathrate, Nature, 443, 320, 10.1038/nature05145
Ramachandran, 1999, Synthesis and X-ray characterization of silicon clathrates, J. Solid State Chem., 145, 716, 10.1006/jssc.1999.8295
San-Miguel, 1999, High pressure behavior of silicon clathrates: a new class of low compressibility materials, Phys. Rev. Lett., 83, 5290, 10.1103/PhysRevLett.83.5290
Beekman, 2009, Preparation and crystal growth of Na24Si136, J. Am. Chem. Soc., 131, 9642, 10.1021/ja903362b
Adams, 1994, Wide-band-gap Si in open fourfold-coordinated clathrate structures, Phys. Rev. B, 49, 8048, 10.1103/PhysRevB.49.8048
Rey, 2008, First-principles study of lithium-doped carbon clathrates under pressure, J. Phys. Condens. Matter, 20, 215218, 10.1088/0953-8984/20/21/215218
Blase, 2003, Quasiparticle band structure and screening in silicon and carbon clathrates, Phys. Rev. B, 67, 10.1103/PhysRevB.67.035211
Blase, 2004, Exceptional ideal strength of carbon clathrates, Phys. Rev. Lett., 92, 215505, 10.1103/PhysRevLett.92.215505
Ribeiro, 2006, Hypothetical hard structures of carbon with cubic symmetry, Phys. Rev. B, 74, 10.1103/PhysRevB.74.172101
Li, 2015, Cubic C96: a novel carbon allotrope with a porous nanocube network, J. Mater. Chem. A, 3, 10448, 10.1039/C5TA01045D
Hu, 2012, Exotic cubic carbon allotropes, J. Phys. Chem. C, 116, 24233, 10.1021/jp3064323
Winkler, 1998, Structure and properties of supercubane from density functional calculations, Chem. Phys. Lett., 293, 284, 10.1016/S0009-2614(98)00762-3
Gal’pern, 2001, A new crystalline form of carbon based on the C36 fullerene: simulating its crystal and electronic structure, J. Exp. Theor. Phys. Lett., 73, 491, 10.1134/1.1385665
Popov, 2007, Cubic Polymerized Structures of Small Fullerenes C20, C24, C28, C32, 713
Adams, 1993, Jahn-Teller distortions in solid C20 and other fullerene structures, Chem. Phys., 176, 61, 10.1016/0301-0104(93)85007-U
de Corato, 2013, Two C28 Clathrates, 75
Yamanaka, 2006, Electron conductive three-dimensional polymer of cuboidal C60, Phys. Rev. Lett., 96, 076602, 10.1103/PhysRevLett.96.076602
Yamanaka, 2008, Topochemical 3D polymerization of C60 under high pressure at elevated temperatures, J. Am. Chem. Soc., 130, 4303, 10.1021/ja076761k
Wang, 2010, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B, 82, 10.1103/PhysRevB.82.094116
Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301
Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133
Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864
Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689
Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188
Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036
Clark, 2005, First principles methods using CASTEP, Z. Kristallogr., 220
Zhang, 2004, Superhard cubic BC2N compared to diamond, Phys. Rev. Lett., 93, 195504, 10.1103/PhysRevLett.93.195504
Roundy, 1999, Ideal shear strengths of fcc aluminum and copper, Phys. Rev. Lett., 82, 2713, 10.1103/PhysRevLett.82.2713
Amsler, 2012, Crystal structure of cold compressed graphite, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.065501
Li, 2009, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.175506
Qingkun, 2011, Lonsdaleite – A material stronger and stiffer than diamond, Scr. Mater., 65, 229, 10.1016/j.scriptamat.2011.04.013
Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.075501
Zhao, 2011, Novel superhard carbon: C-centered orthorhombic C8, Physical Review Letters, 107, 10.1103/PhysRevLett.107.215502
Hu, 2015, Three dimensional graphdiyne polymers with tunable band gaps, Carbon, 91, 518, 10.1016/j.carbon.2015.05.027
the Reticular Chemistry Structure Resource (RCSR) database http://rcsr.net/nets/sdt.
Öhrström, 2013, Network topology approach to new allotropes of the group 14 elements, Z. Kristallogr. Cryst. Mater., 228, 343, 10.1524/zkri.2013.1620
Wu, 2007, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 76
Pugh, 2009, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci., 45, 823, 10.1080/14786440808520496
Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 65, 349, 10.1088/0370-1298/65/5/307
Frantsevich, 1983, 60
Gao, 2003, Hardness of covalent crystals, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.015502
Phillips, 1970, Ionicity of the chemical bond in crystals, Rev. Mod. Phys., 42, 317, 10.1103/RevModPhys.42.317
Niu, 2012, Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett., 108, 135501, 10.1103/PhysRevLett.108.135501
Chen, 2011, Hardness of T-carbon: density functional theory calculations, Phys. Rev. B, 84, 10.1103/PhysRevB.84.121405
Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026
Zhou, 2010, Ab initiostudy of the formation of transparent carbon under pressure, Phys. Rev. B, 82, 10.1103/PhysRevB.82.134126
Pan, 2009, Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite, Phys. Rev. Lett., 102, 055503, 10.1103/PhysRevLett.102.055503
Telling, 2000, Theoretical strength and cleavage of diamond, Phys. Rev. Lett., 84, 5160, 10.1103/PhysRevLett.84.5160
Spagnolatti, 2002, Electron-phonon interaction in the solid form of the smallest fullerene C20, EPL Europhys. Lett., 59, 572, 10.1209/epl/i2002-00384-1