Superhard superstrong carbon clathrate

Carbon - Tập 105 - Trang 151-155 - 2016
Zihe Li1, Meng Hu1, Mengdong Ma1, Yufei Gao1, Bo Xu1, Julong He1, Dongli Yu1, Yongjun Tian1, Zhisheng Zhao1
1State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao, 066004, China

Tài liệu tham khảo

Heimann, 1997, Carbon allotropes: a suggested classification scheme based on valence orbital hybridization, Carbon, 35, 1654, 10.1016/S0008-6223(97)82794-7 Iijima, 1991, Helical microtubules of graphitic carbon, Nature, 354, 56, 10.1038/354056a0 Ekimov, 2004, Superconductivity in diamond, Nature, 428, 542, 10.1038/nature02449 Meyer, 2007, The structure of suspended graphene sheets, Nature, 446, 60, 10.1038/nature05545 Wang, 2005, Carbon phase diagram fromAb initiomolecular dynamics, Phys. Rev. Lett., 95, 10.1103/PhysRevLett.95.185701 Benedek, 1995, Hallow diamonds: stability and elastic properties, Chem. Phys. Lett., 244, 339, 10.1016/0009-2614(95)00946-2 Herrmann, 1999, Electronic structure of Si and Ge gold-doped clathrates, Phys. Rev. B, 60, 13245, 10.1103/PhysRevB.60.13245 Kasper, 1965, Clathrate structure of silicon Na8Si46 and NaxSi136 (x< 11), Science, 150, 1713, 10.1126/science.150.3704.1713 San-Miguel, 2006, Nanomaterials under high-pressure, Chem. Soc. Rev., 35, 876, 10.1039/b517779k Guloy, 2006, A guest-free germanium clathrate, Nature, 443, 320, 10.1038/nature05145 Ramachandran, 1999, Synthesis and X-ray characterization of silicon clathrates, J. Solid State Chem., 145, 716, 10.1006/jssc.1999.8295 San-Miguel, 1999, High pressure behavior of silicon clathrates: a new class of low compressibility materials, Phys. Rev. Lett., 83, 5290, 10.1103/PhysRevLett.83.5290 Beekman, 2009, Preparation and crystal growth of Na24Si136, J. Am. Chem. Soc., 131, 9642, 10.1021/ja903362b Adams, 1994, Wide-band-gap Si in open fourfold-coordinated clathrate structures, Phys. Rev. B, 49, 8048, 10.1103/PhysRevB.49.8048 Rey, 2008, First-principles study of lithium-doped carbon clathrates under pressure, J. Phys. Condens. Matter, 20, 215218, 10.1088/0953-8984/20/21/215218 Blase, 2003, Quasiparticle band structure and screening in silicon and carbon clathrates, Phys. Rev. B, 67, 10.1103/PhysRevB.67.035211 Blase, 2004, Exceptional ideal strength of carbon clathrates, Phys. Rev. Lett., 92, 215505, 10.1103/PhysRevLett.92.215505 Ribeiro, 2006, Hypothetical hard structures of carbon with cubic symmetry, Phys. Rev. B, 74, 10.1103/PhysRevB.74.172101 Li, 2015, Cubic C96: a novel carbon allotrope with a porous nanocube network, J. Mater. Chem. A, 3, 10448, 10.1039/C5TA01045D Hu, 2012, Exotic cubic carbon allotropes, J. Phys. Chem. C, 116, 24233, 10.1021/jp3064323 Winkler, 1998, Structure and properties of supercubane from density functional calculations, Chem. Phys. Lett., 293, 284, 10.1016/S0009-2614(98)00762-3 Gal’pern, 2001, A new crystalline form of carbon based on the C36 fullerene: simulating its crystal and electronic structure, J. Exp. Theor. Phys. Lett., 73, 491, 10.1134/1.1385665 Popov, 2007, Cubic Polymerized Structures of Small Fullerenes C20, C24, C28, C32, 713 Adams, 1993, Jahn-Teller distortions in solid C20 and other fullerene structures, Chem. Phys., 176, 61, 10.1016/0301-0104(93)85007-U de Corato, 2013, Two C28 Clathrates, 75 Yamanaka, 2006, Electron conductive three-dimensional polymer of cuboidal C60, Phys. Rev. Lett., 96, 076602, 10.1103/PhysRevLett.96.076602 Yamanaka, 2008, Topochemical 3D polymerization of C60 under high pressure at elevated temperatures, J. Am. Chem. Soc., 130, 4303, 10.1021/ja076761k Wang, 2010, Crystal structure prediction via particle-swarm optimization, Phys. Rev. B, 82, 10.1103/PhysRevB.82.094116 Segall, 2002, First-principles simulation: ideas, illustrations and the CASTEP code, J. Phys. Condens. Matter, 14, 2717, 10.1088/0953-8984/14/11/301 Kohn, 1965, Self-consistent equations including exchange and correlation effects, Phys. Rev., 140, A1133, 10.1103/PhysRev.140.A1133 Hohenberg, 1964, Inhomogeneous electron gas, Phys. Rev., 136, B864, 10.1103/PhysRev.136.B864 Jones, 1989, The density functional formalism, its applications and prospects, Rev. Mod. Phys., 61, 689, 10.1103/RevModPhys.61.689 Monkhorst, 1976, Special points for Brillouin-zone integrations, Phys. Rev. B, 13, 5188, 10.1103/PhysRevB.13.5188 Fischer, 1992, General methods for geometry and wave function optimization, J. Phys. Chem., 96, 9768, 10.1021/j100203a036 Clark, 2005, First principles methods using CASTEP, Z. Kristallogr., 220 Zhang, 2004, Superhard cubic BC2N compared to diamond, Phys. Rev. Lett., 93, 195504, 10.1103/PhysRevLett.93.195504 Roundy, 1999, Ideal shear strengths of fcc aluminum and copper, Phys. Rev. Lett., 82, 2713, 10.1103/PhysRevLett.82.2713 Amsler, 2012, Crystal structure of cold compressed graphite, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.065501 Li, 2009, Superhard monoclinic polymorph of carbon, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.175506 Qingkun, 2011, Lonsdaleite – A material stronger and stiffer than diamond, Scr. Mater., 65, 229, 10.1016/j.scriptamat.2011.04.013 Wang, 2011, Low-temperature phase transformation from graphite to sp3 orthorhombic carbon, Phys. Rev. Lett., 106, 10.1103/PhysRevLett.106.075501 Zhao, 2011, Novel superhard carbon: C-centered orthorhombic C8, Physical Review Letters, 107, 10.1103/PhysRevLett.107.215502 Hu, 2015, Three dimensional graphdiyne polymers with tunable band gaps, Carbon, 91, 518, 10.1016/j.carbon.2015.05.027 the Reticular Chemistry Structure Resource (RCSR) database http://rcsr.net/nets/sdt. Öhrström, 2013, Network topology approach to new allotropes of the group 14 elements, Z. Kristallogr. Cryst. Mater., 228, 343, 10.1524/zkri.2013.1620 Wu, 2007, Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles, Phys. Rev. B, 76 Pugh, 2009, XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals, Lond. Edinb. Dublin Philos. Mag. J. Sci., 45, 823, 10.1080/14786440808520496 Hill, 1952, The elastic behaviour of a crystalline aggregate, Proc. Phys. Soc. Sect. A, 65, 349, 10.1088/0370-1298/65/5/307 Frantsevich, 1983, 60 Gao, 2003, Hardness of covalent crystals, Phys. Rev. Lett., 91, 10.1103/PhysRevLett.91.015502 Phillips, 1970, Ionicity of the chemical bond in crystals, Rev. Mod. Phys., 42, 317, 10.1103/RevModPhys.42.317 Niu, 2012, Families of superhard crystalline carbon allotropes constructed via cold compression of graphite and nanotubes, Phys. Rev. Lett., 108, 135501, 10.1103/PhysRevLett.108.135501 Chen, 2011, Hardness of T-carbon: density functional theory calculations, Phys. Rev. B, 84, 10.1103/PhysRevB.84.121405 Chen, 2011, Modeling hardness of polycrystalline materials and bulk metallic glasses, Intermetallics, 19, 1275, 10.1016/j.intermet.2011.03.026 Zhou, 2010, Ab initiostudy of the formation of transparent carbon under pressure, Phys. Rev. B, 82, 10.1103/PhysRevB.82.134126 Pan, 2009, Harder than diamond: superior indentation strength of wurtzite BN and lonsdaleite, Phys. Rev. Lett., 102, 055503, 10.1103/PhysRevLett.102.055503 Telling, 2000, Theoretical strength and cleavage of diamond, Phys. Rev. Lett., 84, 5160, 10.1103/PhysRevLett.84.5160 Spagnolatti, 2002, Electron-phonon interaction in the solid form of the smallest fullerene C20, EPL Europhys. Lett., 59, 572, 10.1209/epl/i2002-00384-1