Supergroup F Wolbachia with extremely reduced genome: transition to obligate insect symbionts
Tóm tắt
Wolbachia belong to highly abundant bacteria which are frequently found in invertebrate microbiomes and manifest by a broad spectrum of lifestyles from parasitism to mutualism. Wolbachia supergroup F is a particularly interesting clade as it gave rise to symbionts of both arthropods and nematodes, and some of its members are obligate mutualists. Investigations on evolutionary transitions among the different symbiotic stages have been hampered by a lack of the known diversity and genomic data for the supergroup F members. Based on amplicon screening, short- and long-read WGS approaches, and laser confocal microscopy, we characterize five new supergroup F Wolbachia strains from four chewing lice species. These strains reached different evolutionary stages and represent two remarkably different types of symbiont genomes. Three of the genomes resemble other known members of Wolbachia F supergroup, while the other two show typical signs of ongoing gene inactivation and removal (genome size, coding density, low number of pseudogenes). Particularly, wMeur1, a symbiont fixed in microbiomes of Menacanthus eurysternus across four continents, possesses a highly reduced genome of 733,850 bp. The horizontally acquired capacity for pantothenate synthesis and localization in specialized bacteriocytes suggest its obligate nutritional role. The genome of wMeur1 strain, from the M. eurysternus microbiome, represents the smallest currently known Wolbachia genome and the first example of Wolbachia which has completed genomic streamlining as known from the typical obligate symbionts. This points out that despite the large amount and great diversity of the known Wolbachia strains, evolutionary potential of these bacteria still remains underexplored. The diversity of the four chewing lice microbiomes indicates that this vast parasitic group may provide suitable models for further investigations.
Tài liệu tham khảo
Scholz M, Albanese D, Tuohy K, Donati C, Segata N, Rota-Stabelli O. Large scale genome reconstructions illuminate Wolbachia evolution. Nat Commun. 2020;11(1):5235.
Lo N, Casiraghi M, Salati E, Bazzocchi C, Bandi C. How many Wolbachia supergroups exist? Mol Biol Evol. 2002;19(3):341–6.
Ferri E, Bain O, Barbuto M, Martin C, Lo N, Uni S, et al. New insights into the evolution of Wolbachia infections in filarial nematodes inferred from a large range of screened species. Plos One. 2011;6(6):e20843.
Lefoulon E, Clark T, Borveto F, Perriat-Sanguinet M, Moulia C, Slatko B, et al. Pseudoscorpion Wolbachia symbionts: diversity and evidence for a new supergroup S. Bmc Microbiol. 2020;20(1):188.
Baldo L, Hotopp J, Jolley K, Bordenstein S, Biber S, Choudhury R, et al. Multilocus sequence typing system for the endosymbiont Wolbachia pipientis. Appl Environ Microbiol. 2006;72(11):7098–110.
Hosokawa T, Koga R, Kikuchi Y, Meng X, Fukatsu T. Wolbachia as a bacteriocyte-associated nutritional mutualist. Proc Natl Acad Sci USA. 2010;107(2):769–74.
Ishmael N, Hotopp J, Ioannidis P, Biber S, Sakamoto J, Siozios S, et al. Extensive genomic diversity of closely related Wolbachia strains. Microbiology-Sgm. 2009;155:2211–22.
Driscoll T, Verhoeve V, Brockway C, Shrewsberry D, Plumer M, Sevdalis S, et al. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. Peerj. 2020;8:e10646.
Gerth M, Gansauge M, Weigert A, Bleidorn C. Phylogenomic analyses uncover origin and spread of the Wolbachia pandemic. Nat Commun. 2014;5:5117.
Lefoulon E, Clark T, Guerrero R, Canizales I, Cardenas-Callirgos J, Junker K, et al. Diminutive, degraded but dissimilar: Wolbachia genomes from filarial nematodes do not conform to a single paradigm. Microb Genom. 2020;6(12):mgen000487.
Keiser P, Coulibaly Y, Kubofcik J, Diallo A, Klion A, Traore S, et al. Molecular identification of Wolbachia from the filarial nematode Mansonella perstans. Mol Biochem Parasitol. 2008;160(2):123–8.
Panaram K, Marshall J. F supergroup Wolbachia in bush crickets: what do patterns of sequence variation reveal about this supergroup and horizontal transfer between nematodes and arthropods? Genetica. 2007;130(1):53–60.
Zimmermann B, Cardoso G, Bouchon D, Pezzi P, Palaoro A, Araujo P. Supergroup F Wolbachia in terrestrial isopods: Horizontal transmission from termites? Evol Ecol. 2021;35(2):165–82.
Kyei-Poku G, Colwell D, Coghlin P, Benkel B, Floate K. On the ubiquity and phylogeny of Wolbachia in lice. Mol Ecol. 2005;14(1):285–94.
Allen JM, Burleigh JG, Light JE, Reed DL. Effects of 16S rDNA sampling on estimates of the number of endosymbiont lineages in sucking lice. PeerJ. 2016;4:e2187.
Boyd B, Allen J, Koga R, Fukatsu T, Sweet A, Johnson K, et al. Two Bacterial Genera, Sodalis and Rickettsia, Associated with the Seal Louse Proechinophthirus fluctus (Phthiraptera: Anoplura). Appl Environ Microbiol. 2016;82(11):3185–97.
Boyd BM, Allen JM, de Crécy-Lagard V, Reed DL. Genome Sequence of Candidatus Riesiapediculischaeffi, Endosymbiont of Chimpanzee Lice, and Genomic Comparison of Recently Acquired Endosymbionts from Human and Chimpanzee Lice. G3. 2014;4(11):2189–95.
Fukatsu T, Hosokawa T, Koga R, Nikoh N, Kato T, Hayama S, et al. Intestinal endocellular symbiotic bacterium of the macaque louse Pedicinus obtusus: Distinct endosymbiont origins in anthropoid primate lice and the old world monkey louse. Appl Environ Microbiol. 2009;75(11):3796–9.
Hypsa V, Krizek J. Molecular evidence for polyphyletic origin of the primary symbionts of sucking lice (phthiraptera, anoplura). Microb Ecol. 2007;54(2):242–51.
Rihova J, Novakova E, Husnik F, Hypsa V. Legionella becoming a mutualist: Adaptive processes shaping the genome of symbiont in the louse Polyplax serrata. Genome Biol Evol. 2017;9(11):2946–57.
Rihova J, Batani G, Rodriguez-Ruano S, Martinu J, Vacha F, Novakova E, et al. A new symbiotic lineage related to Neisseria and Snodgrassella arises from the dynamic and diverse microbiomes in sucking lice. Mol Ecol. 2021;30(9):2178–96.
Allen JM, Reed DL, Perotti MA, Braig HR. Evolutionary relationships of “Candidatus Riesia spp.,” endosymbiotic enterobacteriaceae living within hematophagous primate lice. Appl Environ Microbiol. 2007;73(5):1659–64.
de Moya R, Yoshizawa K, Walden K, Sweet A, Dietrich C, Kevin P. Phylogenomics of parasitic and nonparasitic Lice (Insecta: Psocodea): Combining sequence data and exploring compositional bias solutions in next generation data sets. Syst Biol. 2021;70(4):719–38.
Marcondes CB, Linardi PM. Sucking and Chewing Lice. In: Marcondes CB, editor. Arthropod Borne Diseases. Cham: Springer International Publishing; 2017. p. 503–15.
Price RD, Hellenthal RA, Palma RL, Johnson KP, Clayton DH. The chewing lice: World checklist and biological overview. IllinoisNatural History Survey Special Publication. 2003;(24). ISBN 1–882932–08–0.
Alickovic L, Johnson K, Boyd B. The reduced genome of a heritable symbiont from an ectoparasitic feather feeding louse. Bmc Ecolo Evol. 2021;21(1):108.
Martinu J, Sychra O, Literak I, Capek M, Gustafsson D, Stefka J. Host generalists and specialists emerging side by side: an analysis of evolutionary patterns in the cosmopolitan chewing louse genus Menacanthus. Int J Parasitol. 2015;45(1):63–73.
Leinonen R, Sugawara H, Shumway M, C INSD, C INSD. The Sequence Read Archive. Nucleic Acids Res. 2011;39:D19–21.
Brown JJ, Rodriguez-Ruano SM, Poosakkannu A, Batani G, Schmidt JO, Roachell W, et al. Ontogeny, species identity, and environment dominate microbiome dynamics in wild populations of kissing bugs (Triatominae). Microbiome. 2020;8(1):146.
Parada A, Needham D, Fuhrman J. Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ Microbiol. 2016;18(5):1403–14.
Quince C, Lanzen A, Davenport R, Turnbaugh P. Removing Noise From Pyrosequenced Amplicons. Bmc Bioinformatics. 2011;12:38.
Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996.
Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, et al. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–6.
Team R. RStudio: Integrated Development for R.: RStudio, PBC, Boston, MA URL http://www.rstudio.com/ . 2020.
McMurdie PJ, Holmes S. phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Plos One. 2013;8(4):e61217.
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST plus : architecture and applications. Bmc Bioinformatics. 2009;10:421.
Allen J, LaFrance R, Folk R, Johnson K, Guralnick R. aTRAM 2.0: An Improved, Flexible Locus Assembler for NGS Data. Evol Bioinform. 2018;14:1176934318774546.
Yilmaz L, Okten H, Noguera D. Making all parts of the 16S rRNA of Escherichia coli accessible in situ to single DNA oligonucleotides. Appl Environ Microbiol. 2006;72(1):733–44.
Heddi A, Grenier AM, Khatchadourian C, Charles H, Nardon P. Four intracellular genomes direct weevil biology: Nuclear, mitochondrial, principal endosymbiont, and Wolbachia. Proc Natl Acad Sci USA. 1999;96(12):6814–9.
Manni M, Berkeley M, Seppey M, Simao F, Zdobnov E. BUSCO Update: Novel and Streamlined Workflows along with Broader and Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral Genomes. Mol Biol Evol. 2021;38(10):4647–54.
Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics. 2008;9:75.
Arndt D, Grant J, Marcu A, Sajed T, Pon A, Liang Y, et al. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 2016;44(W1):W16–21.
Syberg-Olsen MJ, Garber AI, Keeling PJ, McCutcheon JP, Husnik F. Pseudofinder: detection of pseudogenes in prokaryotic genomes. Mol Biol Evol. 2022;39(7):msac153.
Seemann T. Prokka: rapid prokaryotic genome annotation. Bioinformatics. 2014;30(14):2068–9.
Buchfink B, Xie C, Huson D. Fast and sensitive protein alignment using DIAMOND. Nat Methods. 2015;12(1):59–60.
Huerta-Cepas J, Forslund K, Coelho L, Szklarczyk D, Jensen L, von Mering C, et al. Fast genome-wide functional annotation through orthology assignment by eggNOG-Mapper. Mol Biol Evol. 2017;34(8):2115–22.
Emms D, Kelly S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 2019;20(1):238.
Conway J, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets and their properties. Bioinformatics. 2017;33(18):2938–40.
Jolley K, Maiden M. BIGSdb: Scalable analysis of bacterial genome variation at the population level. Bmc Bioinformatics. 2010;11:595.
Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 2004;32(5):1792–7.
Trifinopoulos J, Nguyen L, von Haeseler A, Minh B. W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis. Nucleic Acids Res. 2016;44(W1):W232–5.
Castresana J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol. 2000;17(4):540–52.
Lartillot N, Rodrigue N, Stubbs D, Richer J. PhyloBayes MPI: Phylogenetic reconstruction with infinite mixtures of profiles in a parallel environment. Syst Biol. 2013;62(4):611–5.
Lartillot N, Brinkmann H, Philippe H. Suppression of long-branch attraction artefacts in the animal phylogeny using a site-heterogeneous model. Bmc Evol Biol. 2007;7 Suppl 1(Suppl 1):S4.
Yoon S, Ha S, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol. 2017;110(10):1281–6.
Darling A, Mau B, Perna N. progressiveMauve: Multiple genome alignment with gene gain, loss and rearrangement. Plos One. 2010;5(6):e11147.
Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 2012;28(12):1647–9.
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 2016;44(D1):D457–62.
Kolmogorov M, Yuan J, Lin Y, Pevzner P. Assembly of long, error-prone reads using repeat graphs. Nat Biotechnol. 2019;37(5):540.
Vaser R, Sovic I, Nagarajan N, Sikic M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 2017;27(5):737–46.
Shigenobu S, Watanabe H, Hattori M, Sakaki Y, Ishikawa H. Genome sequence of the endocellular bacterial symbiont of aphids Buchnera sp APS. Nature. 2000;407(6800):81–6.
Wernegreen JJ. Genome evolution in bacterial endosymbionts of insects. Nat Rev Genet. 2002;3(11):850–61.
Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T. Evolutionary origin of insect–Wolbachia nutritional mutualism. Proc Natl Acad Sci. 2014;111(28):10257–62.
Darby AC, Armstrong SD, Bah GS, Kaur G, Hughes MA, Kay SM, et al. Analysis of gene expression from the Wolbachia genome of a filarial nematode supports both metabolic and defensive roles within the symbiosis. Genome Res. 2012;22(12):2467–77.
Smith W, Oakeson K, Johnson K, Reed D, Carter T, Smith K, et al. Phylogenetic analysis of symbionts in feather-feeding lice of the genus Columbicola: evidence for repeated symbiont replacements. Bmc Evol Biol. 2013;13:109.
Moran NA. Accelerated evolution and muller’s rachet in endosymbiotic bacteria. Proc Natl Acad Sci U S A. 1996;93:2873–8.
Fisher R, Henry L, Cornwallis C, Kiers E, West S. The evolution of host-symbiont dependence. Nat Commun. 2017;8:15973.
Gerth M, Bleidorn C. Comparative genomics provides a timeframe for Wolbachia evolution and exposes a recent biotin synthesis operon transfer. Nat Microbiol. 2017;2(3):16241.
Newton I, Rice D. The Jekyll and Hyde Symbiont: Could Wolbachia Be a Nutritional Mutualist? J Bacteriol. 2020;202(4):e00589-19.
Kirkness EF, Haas BJ, Sun WL, Braig HR, Perotti MA, Clark JM, et al. Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci USA. 2010;107(27):12168–73.
Lo W, Huang Y, Kuo C. Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev. 2016;40(6):855–74.