Superelastic and shape memory equi-atomic nickel-titanium (Ni-Ti) alloy in dentistry: A systematic review

Materials Today Communications - Tập 33 - Trang 104352 - 2022
Mariam Maroof, R. Sujithra, Ravi Prakash Tewari

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chandra, 2016, Epidemiology of periodontal diseases in Indian population since last decade, J. Int Soc. Prev. Community Dent., 6, 91, 10.4103/2231-0762.178741

Peres, 2019, Oral diseases: a global public health challenge, Lancet, 394, 249, 10.1016/S0140-6736(19)31146-8

Gambhir, 2016, Dental public health in India: an insight, J. Fam. Med. Prim. Care, 5, 747, 10.4103/2249-4863.201155

Indian Dental Association, (n.d.). 〈https://www.ida.org.in/Public/Details/Public〉 (accessed August 1, 2022).

Oshida, 2009, Response of Ti–Ni alloys for dental biomaterials to conditions in the mouth, Shape Mem. Alloy. Biomed. Appl., 101, 10.1533/9781845695248.1.101

Meling, 1998, Short-term temperature changes influence the force exerted by superelastic nickel-titanium archwires activated in orthodontic bending, Am. J. Orthod. Dentofac. Orthop., 114, 503, 10.1016/S0889-5406(98)70169-6

Meling, 2001, The effect of short-term temperature changes on superelastic nickel-titanium archwires activated in orthodontic bending, Am. J. Orthod. Dentofac. Orthop., 119, 263, 10.1067/mod.2001.112451

Santoro, 2000, Nickel-titanium alloys: stress-related temperature transitional range, Am. J. Orthod. Dentofac. Orthop., 118, 685, 10.1067/mod.2000.98113

Cioffi, 2005, Electrochemical release testing of nickel-titanium orthodontic wires in artificial saliva using thin layer activation, Acta Biomater., 1, 717, 10.1016/j.actbio.2005.07.008

Kapila, 1991, Effects of clinical recycling on mechanical properties of nickel-titanium alloy wires, Am. J. Orthod. Dentofac. Orthop., 100, 428, 10.1016/0889-5406(91)70082-8

Wang, 2007, Stress corrosion cracking of NiTi in artificial saliva, Dent. Mater., 23, 133, 10.1016/j.dental.2006.01.001

van Aken, 2008, Effect of long-term repeated deflections on fatigue of preloaded superelastic nickel-titanium archwires, Am. J. Orthod. Dentofac. Orthop., 133, 269, 10.1016/j.ajodo.2005.10.030

Mayhew, 1988, Effects of sterilization on the mechanical properties and the surface topography of nickel-titanium arch wires, Am. J. Orthod. Dentofac. Orthop., 93, 232, 10.1016/S0889-5406(88)80008-8

Mohd Jani, 2014, A review of shape memory alloy research, applications and opportunities, Mater. Des. (1980-2015), 56, 1078, 10.1016/j.matdes.2013.11.084

A.R. Pelton, T.W. Duerig, D. Stöckel, A guide to shape memory and superelasticity in Nitinol medical devices, Http://Dx.Doi.Org/10.1080/13645700410017236. 13 (2009) 218–221. https://doi.org/10.1080/13645700410017236.

O.P. Kharbanda, N. Sharma, Nitinol expansion for transverse maxillary deficiency, IEEE/ Engineering in Medicine and Biology Society Annual Conference. (1995). https://doi.org/10.1109/RCEMBS.1995.532985.

Smith, 1992, The effect of clinical use and sterilization on selected orthodontic arch wires, Am. J. Orthod. Dentofac. Orthop., 102, 153, 10.1016/0889-5406(92)70028-9

Sachdeva, 1990, Superelastic Ni-Ti Alloys in Orthodontics, 452

Santoro, 2001, Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part II: deactivation forces, Am. J. Orthod. Dentofac. Orthop., 119, 594, 10.1067/mod.2001.112447

Santoro, 2001, Pseudoelasticity and thermoelasticity of nickel-titanium alloys: a clinically oriented review. Part I: temperature transitional ranges, Am. J. Orthod. Dentofac. Orthop., 119, 587, 10.1067/mod.2001.112446

Farzin-Nia, 2009, Orthodontic devices using Ti–Ni shape memory alloys, Shape Mem. Alloy. Biomed. Appl., 257, 10.1533/9781845695248.2.257

Baumann, 2004, Nickel-titanium: options and challenges, Dent. Clin. North Am., 48, 55, 10.1016/j.cden.2003.11.001

Shen, 2013, Current challenges and concepts of the thermomechanical treatment of nickel-titanium instruments, J. Endod., 39, 163, 10.1016/j.joen.2012.11.005

Gavini, 2018, Nickel-titanium instruments in endodontics: a concise review of the state of the art, Braz. Oral. Res, 32, 44, 10.1590/1807-3107bor-2018.vol32.0067

Buehler, 2004, Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi, J. Appl. Phys., 34, 1475, 10.1063/1.1729603

Buehler, 1968, A summary of recent research on the nitinol alloys and their potential application in ocean engineering, Ocean Eng., 1, 105, 10.1016/0029-8018(68)90019-X

Andreasen, 1971, An evaluation of 55 cobalt substituted Nitinol wire for use in orthodontics, J. Am. Dent. Assoc., 82, 1373, 10.14219/jada.archive.1971.0209

Andreasen, 1980, A clinical trial of alignment of teeth using a 0.019 in. thermal nitinol wire with a transition temperature range between 31 degrees C. and 45 degrees C, Am. J. Orthod., 78, 528, 10.1016/0002-9416(80)90303-6

Andreasen, 1982, An investigation of linear dimensional changes as a function of temperature in an 0.010 in. 55cobalt-substituted annealed nitinol alloy wire, Am. J. Orthod., 82, 469, 10.1016/0002-9416(82)90314-1

Andreasen, 1985, Stiffness changes in thermodynamic Nitinol with increasing temperature, Angle Orthod., 120

Thompson, 2000, An overview of nickel-titanium alloys used in dentistry, Int Endod. J., 33, 297, 10.1046/j.1365-2591.2000.00339.x

Andreasen, 1979, 55 Nitinol wire: force developed as a function of “elastic memory, Aust. Dent. J., 24, 146, 10.1111/j.1834-7819.1979.tb02413.x

de, 2001, Torsional properties of commercial nickel-titanium wires during activation and deactivation, Am. J. Orthod. Dentofac. Orthop., 120, 76, 10.1067/mod.2001.115147

Pun, 2008, Corrosion behavior of shape memory, superelastic, and nonsuperelastic nickel-titanium-based orthodontic wires at various temperatures, Dent. Mater., 24, 221, 10.1016/j.dental.2007.05.003

Iijima, 2002, Micro X-ray diffraction study of superelastic nickel–titanium orthodontic wires at different temperatures and stresses, Biomaterials, 23, 1769, 10.1016/S0142-9612(01)00303-9

Hou, 2011, Phase transformation behaviour and bending property of twisted nickel-titanium endodontic instruments, Int Endod. J., 44, 253, 10.1111/j.1365-2591.2010.01818.x

Wilkinson, 2002, Load-deflection characteristics of superelastic nickel-titanium orthodontic wires, Am. J. Orthod. Dentofac. Orthop., 121, 483, 10.1067/mod.2002.121819

Spini, 2014, Transition temperature range of thermally activated nickel-titanium archwires, J. Appl. Oral. Sci., 22, 109, 10.1590/1678-775720130133

Zinelis, 2010, A metallurgical characterization of ten endodontic Ni-Ti instruments: assessing the clinical relevance of shape memory and superelastic properties of Ni-Ti endodontic instruments, Int Endod. J., 43, 125, 10.1111/j.1365-2591.2009.01651.x

de, 2001, Force-deflection properties of superelastic nickel-titanium archwires, Am. J. Orthod. Dentofac. Orthop., 120, 378, 10.1067/mod.2001.117200

Iijima, 2008, X-ray diffraction study of low-temperature phase transformations in nickel–titanium orthodontic wires, Dent. Mater., 24, 1454, 10.1016/j.dental.2008.03.005

Arreghini, 2016, Load deflection characteristics of square and rectangular archwires, Int Orthod., 14, 1

Yong, 2010, Some factors affecting the transformation hysteresis in shape memory alloys, 361

Mullins, 1996, Mechanical behavior of thermo-responsive orthodontic archwires, Dent. Mater., 12, 308, 10.1016/S0109-5641(96)80039-X

Huang, 2020, Biomechanical and biochemical compatibility in innovative biomaterials, Biocompat. Perform. Med. Devices, 23, 10.1016/B978-0-08-102643-4.00004-5

Polyzois, 1994, In vitro evaluation of dental materials, Clin. Mater., 16, 21, 10.1016/0267-6605(94)90088-4

Setcos, 2006, The safety of nickel containing dental alloys, Dent. Mater., 22, 1163, 10.1016/j.dental.2005.11.033

el Medawar, 2002, Electrochemical and cytocompatibility assessment of NiTiNOL memory shape alloy for orthodontic use, Biomol. Eng., 19, 153, 10.1016/S1389-0344(02)00041-2

Xu, 2019, Preparation and characterization of the aesthetic coating on nickel-titanium orthodontic archwire by electrophoretic deposition, Prog. Org. Coat., 137

Toker, 2018, Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid, J. Mater. Sci., 53, 948, 10.1007/s10853-017-1586-4

Starosvetsky, 2001, TiN coating improves the corrosion behavior of superelastic NiTi surgical alloy, Surf. Coat. Technol., 148, 268, 10.1016/S0257-8972(01)01356-1

Lages, 2017, Salivary levels of nickel, chromium, iron, and copper in patients treated with metal or esthetic fixed orthodontic appliances: a retrospective cohort study, J. Trace Elem. Med Biol., 40, 67, 10.1016/j.jtemb.2016.12.011

Uzer, 2016, A critical approach to the biocompatibility testing of niti orthodontic archwires, Int. J. Metall. Met. Phys., 1, 1, 10.35840/2631-5076/9203

Kapila, 1990, Evaluation of friction between edgewise stainless steel brackets and orthodontic wires of four alloys, Am. J. Orthod. Dentofac. Orthop., 98, 117, 10.1016/0889-5406(90)70005-W

Kusy, 1990, Dynamic mechanical properties of straight titanium alloy arch wires, Dent. Mater., 6, 228, 10.1016/S0109-5641(05)80003-X

Andreasen, 1973, An evaluation of cobalt-substituted nitinol wire in orthodontics, Am. J. Orthod., 63, 462, 10.1016/0002-9416(73)90159-0

Andreasen, 1972, A use hypothesis for 55 Nitinol wire for orthodontics, Angle Orthod., 172

Thayer, 1995, X-ray diffraction of nitinol orthodontic arch wires, Am. J. Orthod. Dentofac. Orthop., 107, 604, 10.1016/S0889-5406(95)70103-6

Andreasen, 1978, Laboratory and clinical analyses of nitinol wire, Am. J. Orthod., 73, 142, 10.1016/0002-9416(78)90184-7

Burstone, 1985, Chinese NiTi wire—a new orthodontic alloy, Am. J. Orthod., 87, 445, 10.1016/0002-9416(85)90083-1

Miura, 1988, Japanese NiTi alloy wire: use of the direct electric resistance heat treatment method, Eur. J. Orthod., 10, 187, 10.1093/ejo/10.1.187

Gravina, 2014, Mechanical properties of NiTi and CuNiTi wires used in orthodontic treatment. Part 2: Microscopic surface appraisal and metallurgical characteristics, Dent. Press J. Orthod., 19, 69, 10.1590/2176-9451.19.1.069-076.oar

Nespoli, 2015, DSC and three-point bending test for the study of the thermo-mechanical history of NiTi and NiTi-based orthodontic archwires: The material point of view, J. Therm. Anal. Calorim., 120, 1129, 10.1007/s10973-015-4441-3

Gil, 1999, Effect of copper addition on the superelastic behavior of Ni-Ti shape memory alloys for orthodontic applications, J. Biomed. Mater. Res, 682, 10.1002/(SICI)1097-4636(1999)48:5<682::AID-JBM12>3.0.CO;2-M

Miura, 1986, The super-elastic property of the Japanese NiTi alloy wire for use in orthodontics, Am. J. Orthod. Dentofac. Orthop., 90, 1, 10.1016/0889-5406(86)90021-1

Prososki, 1991, Static frictional force and surface roughness of nickel-titanium arch wires, Am. J. Orthod. Dentofac. Orthop., 100, 341, 10.1016/0889-5406(91)70072-5

Drescher, 1989, Frictional forces between bracket and arch wire, Am. J. Orthod. Dentofac. Orthop., 96, 397, 10.1016/0889-5406(89)90324-7

Wichelhaus, 2005, The effect of surface treatment and clinical use on friction in NiTi orthodontic wires, Dent. Mater., 21, 938, 10.1016/j.dental.2004.11.011

Tidy, 1989, Frictional forces in fixed appliances, Am. J. Orthod. Dentofac. Orthop., 96, 249, 10.1016/0889-5406(89)90462-9

Angolkar, 1990, Evaluation of friction between ceramic brackets and orthodontic wires of four alloys, Am. J. Orthod. Dentofac. Orthop., 98, 499, 10.1016/0889-5406(90)70015-5

Segner, 1995, Properties of superelastic wires and their relevance to orthodontic treatment, Eur. J. Orthod., 17, 395, 10.1093/ejo/17.5.395

Segal, 2009, Influence of stress and phase on corrosion of a superelastic nickel-titanium orthodontic wire, Am. J. Orthod. Dentofac. Orthop., 135, 764, 10.1016/j.ajodo.2007.04.042

Brauchli, 2011, Influence of bending mode on the mechanical properties of nickel-titanium archwires and correlation to differential scanning calorimetry measurements, Am. J. Orthod. Dentofac. Orthop., 139, e449, 10.1016/j.ajodo.2009.12.034

Khier, 1991, Bending properties of superelastic and nonsuperelastic nickel-titanium orthodontic wires, Am. J. Orthod. Dentofac. Orthop., 99, 310, 10.1016/0889-5406(91)70013-M

de, 2001, Force-deflection properties of superelastic nickel-titanium archwires, Am. J. Orthod. Dentofac. Orthop., 120, 378, 10.1067/mod.2001.117200

Yoneyama, 1992, Super-elasticity and thermal behavior of Ni-Ti alloy orthodontic arch wires, Dent. Mater. J., 11, 1, 10.4012/dmj.11.1

Tonner, 1994, The characteristics of super-elastic Ni-Ti wires in three-point bending. Part II: intra-batch variation, Eur. J. Orthod., 16, 421, 10.1093/ejo/16.5.421

Tonner, 1994, The characteristics of super-elastic Ni-Ti wires in three-point bending. Part I: the effect of temperature, Eur. J. Orthod., 16, 409, 10.1093/ejo/16.5.409

Garrec, 2005, Evolution of flexural rigidity according to the cross-sectional dimension of a superelastic nickel titanium orthodontic wire, Eur. J. Orthod., 27, 402, 10.1093/ejo/cji014

Hurst, 1990, An evaluation of the shape-memory phenomenon of nickel-titanium orthodontic wires, Am. J. Orthod. Dentofac. Orthop., 98, 72, 10.1016/0889-5406(90)70034-A

Bradley, 1996, Differential scanning calorimetry (DSC) analyses of superelastic and nonsuperelastic nickel-titanium orthodontic wires, Am. J. Orthod. Dentofac. Orthop., 109, 589, 10.1016/S0889-5406(96)70070-7

Kusy, 2007, Thermal and mechanical characteristics of stainless steel, titanium-molybdenum, and nickel-titanium archwires, Am. J. Orthod. Dentofac. Orthop., 131, 229, 10.1016/j.ajodo.2005.05.054

Berzins, 2010, Phase transformation changes in thermocycled nickel–titanium orthodontic wires, Dent. Mater., 26, 666, 10.1016/j.dental.2010.03.010

van Aken, 2008, Effect of long-term repeated deflections on fatigue of preloaded superelastic nickel-titanium archwires, Am. J. Orthod. Dentofac. Orthop., 133, 269, 10.1016/j.ajodo.2005.10.030

Brantley, 2003, Temperature-modulated DSC provides new insight about nickel-titanium wire transformations, Am. J. Orthod. Dentofac. Orthop., 124, 387, 10.1016/S0889-5406(03)00570-5

Santoro, 2001, Pseudoelasticity and thermoelasticity of nickel-titanium alloys: A clinically oriented review. Part I: Temperature transitional ranges, Am. J. Orthod. Dentofac. Orthop., 119, 587, 10.1067/mod.2001.112446

Obaisi, 2016, Comparison of the transformation temperatures of heat-activated Nickel-Titanium orthodontic archwires by two different techniques, Dent. Mater., 32, 879, 10.1016/j.dental.2016.03.017

Iijima, 2002, Micro X-ray diffraction study of superelastic nickel–titanium orthodontic wires at different temperatures and stresses, Biomaterials, 23, 1769, 10.1016/S0142-9612(01)00303-9

Buckthal, 1986, Survey of sterilization and disinfection procedures, J. Clin. Orthod., 759

Friedli, 2020, Influence of different storage temperatures on the mechanical properties of NiTi, Cu-NiTi and SS orthodontic archwires: an in vitro study, Int. Orthod., 18, 561, 10.1016/j.ortho.2020.05.009

Kapila, 1991, Effects of clinical recycling on mechanical properties of nickel-titanium alloy wires, Am. J. Orthod. Dentofac. Orthop., 100, 428, 10.1016/0889-5406(91)70082-8

Rerhrhaye, 2014, Degradation of the mechanical properties of orthodontic NiTi alloys in the oral environment: An in vitro study, Int. Orthod., 12, 271

Miura, 1988, The super-elastic Japanese NiTi alloy wire for use in orthodontics part III. Studies on the Japanese NiTi alloy coil springs, Am. J. Orthod. Dentofac. Orthop., 94, 89, 10.1016/0889-5406(88)90356-3

Bourke, 2010, Force characteristics of nickel-titanium open-coil springs, Am. J. Orthod. Dentofac. Orthop., 138, 142.e1, 10.1016/j.ajodo.2010.01.026

Manhartsberger, 1996, Force delivery of Ni-Ti coil springs, Am. J. Orthod. Dentofac. Orthop., 109, 8, 10.1016/S0889-5406(96)70158-0

Tripolt, 1999, Force characteristics of nickel-titanium tension coil springs, Am. J. Orthod. Dentofac. Orthop., 115, 498, 10.1016/S0889-5406(99)70271-4

Vidoni, 2010, Combined aging effects of strain and thermocycling on unload deflection modes of nickel-titanium closed-coil springs: an in-vitro comparative study, Am. J. Orthod. Dentofac. Orthop., 138, 451, 10.1016/j.ajodo.2009.05.022

Wichelhaus, 2010, Mechanical behavior and clinical application of nickel-titanium closed-coil springs under different stress levels and mechanical loading cycles, Am. J. Orthod. Dentofac. Orthop., 137, 671, 10.1016/j.ajodo.2008.06.029

Bourauel, 1997, Superelastic nickel titanium alloy retraction springs—an experimental investigation of force systems, Eur. J. Orthod., 19, 491, 10.1093/ejo/19.5.491

Viecilli, 2018, The T-loop in details, Dent. Press J. Orthod., 23, 108, 10.1590/2177-6709.23.1.108-117.sar

Bahia, 2006, Fatigue behaviour of nickel–titanium superelastic wires and endodontic instruments, Fatigue Fract. Eng. Mater. Struct., 29, 518, 10.1111/j.1460-2695.2006.01021.x

Gao, 2012, Evaluation of the impact of raw materials on the fatigue and mechanical properties of profile vortex rotary instruments, J. Endod., 38, 398, 10.1016/j.joen.2011.11.004

Versluis, 2012, Flexural stiffness and stresses in nickel-titanium rotary files for various pitch and cross-sectional geometries, J. Endod., 38, 1399, 10.1016/j.joen.2012.06.008

Pruett, 1997, Cyclic fatigue testing of nickel-titanium endodontic instruments, J. Endod., 23, 77, 10.1016/S0099-2399(97)80250-6

Walia, 1988, An initial investigation of the bending and torsional properties of nitinol root canal files, J. Endod., 14, 346, 10.1016/S0099-2399(88)80196-1

Schäfer, 2003, Bending properties of rotary nickel-titanium instruments, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 96, 757, 10.1016/S1079-2104(03)00358-5

Cheung, 2008, Low-cycle fatigue of rotary NiTi endodontic instruments in hypochlorite solution, Dent. Mater., 24, 753, 10.1016/j.dental.2007.09.004

Xu, 2006, Comparative study of torsional and bending properties for six models of nickel-titanium root canal instruments with different cross-sections, J. Endod., 32, 372, 10.1016/j.joen.2005.08.012

Zhou, 2012, Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments, J. Endod., 38, 1535, 10.1016/j.joen.2012.07.006

De-Deus, 2017, Blue thermomechanical treatment optimizes fatigue resistance and flexibility of the reciproc files, J. Endod., 43, 462, 10.1016/j.joen.2016.10.039

T. Bogoni, R. Scarparo, M. Pinho, A virtual reality simulator for training endodontics procedures using manual files, 2015 IEEE Symposium on 3D User Interfaces, 3DUI 2015 - Proceedings. (2015) 39–42. https://doi.org/10.1109/3DUI.2015.7131724.

Kwak, 2021, Effects of root canal curvature and mechanical properties of nickel-titanium files on torque generation, J. Endod., 47, 1501, 10.1016/j.joen.2021.06.019

Camps, 1995, Relationship between file size and stiffness of nickel titanium instruments, Endod. Dent. Trauma., 11, 270, 10.1111/j.1600-9657.1995.tb00502.x

CAMPS, 1995, Torsional and stiffness properties of nickel-titanium K files, Int Endod. J., 28, 239, 10.1111/j.1365-2591.1995.tb00307.x

Wolcott, 1997, Torsional properties of nickel-titanium versus stainless steel endodontic files, J. Endod., 23, 217, 10.1016/S0099-2399(97)80049-0

Yared, 2004, In vitro study of the torsional properties of new and used ProFile nickel titanium rotary files, J. Endod., 30, 410, 10.1097/00004770-200406000-00008

Gambarini, 2008, Mechanical properties of a new and improved nickel-titanium alloy for endodontic use: an evaluation of file flexibility, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 105, 798, 10.1016/j.tripleo.2008.02.017

Shen, 2013, Phase transformation behavior and mechanical properties of thermomechanically treated K3XF nickel-titanium instruments, J. Endod., 39, 919, 10.1016/j.joen.2013.04.004

Ullmann, 2005, Effect of cyclic fatigue on static fracture loads in protaper nickel-titanium rotary instruments, J. Endod., 31, 183, 10.1097/01.don.0000137641.87125.8f

K. Miyai, A. Ebihara, Y. Hayashi, H. Doi, H. Suda, T. Yoneyama, Influence of phase transformation on the torsional and bending properties of nickel-titanium rotary endodontic instruments, 2006.

Viana, 2010, Relationship between flexibility and physical, chemical, and geometric characteristics of rotary nickel-titanium instruments, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 110, 527, 10.1016/j.tripleo.2010.05.006

Testarelli, 2011, Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel, J. Endod., 37, 1293, 10.1016/j.joen.2011.05.023

Ninan, 2013, Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments, J. Endod., 39, 101, 10.1016/j.joen.2012.08.010

de Arruda Santos, 2014, Mechanical behavior of three nickel-titanium rotary files: a comparison of numerical simulation with bending and torsion tests, Mater. Sci. Eng.: C., 37, 258, 10.1016/j.msec.2014.01.025

Acosta, 2017, Influence of cyclic flexural deformation on the torsional resistance of controlled memory and conventional nickel-titanium instruments, J. Endod., 43, 613, 10.1016/j.joen.2016.11.007

Hayashi, 2007, Phase transformation behaviour and bending properties of hybrid nickel–titanium rotary endodontic instruments, Int. Endod. J., 40, 247, 10.1111/j.1365-2591.2007.01203.x

Pereira, 2013, Mechanical behavior of M-Wire and conventional NiTi wire used to manufacture rotary endodontic instruments, Dent. Mater., 29, e318, 10.1016/j.dental.2013.10.004

Plotino, 2014, Blue treatment enhances cyclic fatigue resistance of vortex nickel-titanium rotary files, J. Endod., 40, 1451, 10.1016/j.joen.2014.02.020

Alapati, 2006, Vickers hardness investigation of work-hardening in used NiTi rotary instruments, J. Endod., 32, 1191, 10.1016/j.joen.2006.07.007

Brockhurst, 1998, Hardness and strength of endodontic instruments made from NiTi Alloy, Aust. Endod. J., 24, 115, 10.1111/j.1747-4477.1998.tb00034.x

Viana, 2006, Influence of sterilization on mechanical properties and fatigue resistance of nickel–titanium rotary endodontic instruments, Int. Endod. J., 39, 709, 10.1111/j.1365-2591.2006.01138.x

Alapati, 2009, Micro-XRD and temperature-modulated DSC investigation of nickel–titanium rotary endodontic instruments, Dent. Mater., 25, 1221, 10.1016/j.dental.2009.04.010

Alapati, 2009, Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments, J. Endod., 35, 1589, 10.1016/j.joen.2009.08.004

Shen, 2011, Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments, J. Endod., 37, 1566, 10.1016/j.joen.2011.08.005

Brantley, 2002, Differential scanning calorimetric studies of nickel titanium rotary endodontic instruments, J. Endod., 28, 567, 10.1097/00004770-200208000-00001

Alexandrou, 2006, SEM observations and differential scanning calorimetric studies of new and sterilized nickel-titanium rotary endodontic instruments, J. Endod., 32, 675, 10.1016/j.joen.2006.01.003

Brantley, 2002, Differential scanning calorimetric studies of nickel-titanium rotary endodontic instruments after simulated clinical use, J. Endod., 28, 774, 10.1097/00004770-200211000-00007

Yahata, 2009, Effect of heat treatment on transformation temperatures and bending properties of nickel–titanium endodontic instruments, Int. Endod. J., 42, 621, 10.1111/j.1365-2591.2009.01563.x

Rapisarda, 1999, Effect of sterilization on the cutting efficiency of rotary nickel-titanium endodontic files, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontol., 88, 343, 10.1016/S1079-2104(99)70040-5

Plotino, 2012, Experimental evaluation on the influence of autoclave sterilization on the cyclic fatigue of new nickel-titanium rotary instruments, J. Endod., 38, 222, 10.1016/j.joen.2011.10.017

Kuhn, 2001, Influence of structure on nickel-titanium endodontic instruments failure, J. Endod., 27, 516, 10.1097/00004770-200108000-00005

Shen, 2011, Fatigue testing of controlled memory wire nickel-titanium rotary instruments, J. Endod., 37, 997, 10.1016/j.joen.2011.03.023

Booth, 2003, A comparison of torque required to fracture three different nickel-titanium rotary instruments around curves of the same angle but of different radius when bound at the tip, J. Endod., 29, 55, 10.1097/00004770-200301000-00015

Bahia, 2005, Decrease in the fatigue resistance of nickel-titanium rotary instruments after clinical use in curved root canals, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endod., 100, 249, 10.1016/j.tripleo.2004.10.013

Haïkel, 1999, Dynamic and cyclic fatigue of engine-driven rotary nickel-titanium endodontic instruments, J. Endod., 25, 434, 10.1016/S0099-2399(99)80274-X

Yared, 2003, An invitro study of the torsional properties of new and used K3 instruments, Int. Endod. J., 36, 764, 10.1046/j.1365-2591.2003.00732.x

Gambarini, 2008, Fatigue resistance of engine-driven rotary nickel-titanium instruments produced by new manufacturing methods, J. Endod., 34, 1003, 10.1016/j.joen.2008.05.007

Grande, 2017, Environmental temperature drastically affects flexural fatigue resistance of nickel-titanium rotary files, J. Endod., 43, 1157, 10.1016/j.joen.2017.01.040

Alghamdi, 2020, Effect of curvature location on fatigue resistance of five nickel-titanium files determined at body temperature, J. Endod., 46, 1682, 10.1016/j.joen.2020.06.041

Shen, 2018, Low environmental temperature influences the fatigue resistance of nickel-titanium files, J. Endod., 44, 626, 10.1016/j.joen.2017.11.004

Dosanjh, 2017, The effect of temperature on cyclic fatigue of nickel-titanium rotary endodontic instruments, J. Endod., 43, 823, 10.1016/j.joen.2016.12.026

Gambarini, 2001, Cyclic fatigue of nickel-titanium rotary instruments after clinical use with low-and high-torque endodontic motors, J. Endod., 27, 772, 10.1097/00004770-200112000-00015

Li, 2002, Cyclic fatigue of endodontic nickel titanium rotary instruments: static and dynamic tests, J. Endod., 28, 448, 10.1097/00004770-200206000-00007

Loios, 2016, Fatigue resistance of rotary endodontic files submitted to axial motion in multiplanar canals manufactured by 3D printing, Procedia Eng., 160, 117, 10.1016/j.proeng.2016.08.870

Bahia, 2005, Physical and mechanical characterization and the influence of cyclic loading on the behaviour of nickel-titanium wires employed in the manufacture of rotary endodontic instruments, Int. Endod. J., 38, 795, 10.1111/j.1365-2591.2005.01016.x

Alfawaz, 2018, Effects of sodium hypochlorite concentration and temperature on the cyclic fatigue resistance of heat-treated nickel-titanium rotary instruments, J. Endod., 44, 1563, 10.1016/j.joen.2018.07.009

Haïkel, 1998, Cutting efficiency of nickel-titanium endodontic instruments and the effect of sodium hypochlorite treatment, J. Endod., 24, 736, 10.1016/S0099-2399(98)80164-7

Han-Hsing Lin, 2021, Effect of sodium hypochlorite on conventional and heat-treated nickel-titanium endodontic rotary instruments – an in vitro study, J. Dent. Sci., 16, 738, 10.1016/j.jds.2020.08.015

Vinothkumar, 2007, Influence of deep dry cryogenic treatment on cutting efficiency and wear resistance of nickel–titanium rotary endodontic instruments, J. Endod., 33, 1355, 10.1016/j.joen.2007.07.017

Alapati, 2005, SEM observations of nickel-titanium rotary endodontic instruments that fractured during clinical use, J. Endod., 31, 40, 10.1097/01.DON.0000132301.87637.4A

Rapisardaa, 2000, The effect of surface treatments of nickel-titanium files on wear and cutting efficiency, Oral. Surg. Oral. Med. Oral. Pathol. Oral. Radiol. Endodontol., 89, 363, 10.1016/S1079-2104(00)70103-X

Rapisarda, 2001, Wear of nickel-titanium endodontic instruments evaluated by scanning electron microscopy: effect of ion implantation, J. Endod., 27, 588, 10.1097/00004770-200109000-00009

Schäfer, 2002, Effect of sterilization on the cutting efficiency of PVD-coated nickel–titanium endodontic instruments, Int. Endod. J., 35, 867, 10.1046/j.1365-2591.2002.00586.x

Schäfer, 2002, Effect of physical vapor deposition on cutting efficiency of nickel-titanium files, J. Endod., 28, 800, 10.1097/00004770-200212000-00002

Jensen, 2019, Guided nitinol-retained (Smileloc) single-tooth dental restorations, Oral. Maxillofac. Surg. Clin. North Am., 31, 437, 10.1016/j.coms.2019.03.006

Shah, 2017, Clinical application of a shape memory implant abutment system, J. Prosthet. Dent., 117, 8, 10.1016/j.prosdent.2016.06.007

Shah, 2019, Shape-memory retained complete arch guided implant treatment using nitinol (Smileloc) abutments, Oral. Maxillofac. Surg. Clin. North Am., 31, 427, 10.1016/j.coms.2019.03.005

Siu, 2020, Treating an edentulous mandible with an implant-supported prosthesis with a shape-memory alloy abutment system, J. Prosthet. Dent., 123, 775, 10.1016/j.prosdent.2019.05.037

Ciambotti, 2001, A comparison of dental and dentoalveolar changes between rapid palatal expansion and nickel-titanium palatal expansion appliances, Am. J. Orthod. Dentofac. Orthop., 119, 11, 10.1067/mod.2001.110167

Mobrici, 2012, Dental and skeletal modifications in adult patients treated with slow maxillary expander, Mondo Ortod., 37, 41, 10.1016/j.mor.2012.04.003

Yahia, 2009, Regulation, orthopedic, dental, endovascular and other applications of Ti–Ni shape memory alloys, Shape Mem. Alloy. Biomed. Appl., 306, 10.1533/9781845695248.2.306

Arciniegas, 2013, New Ni-free superelastic alloy for orthodontic applications, Mater. Sci. Eng. C., 33, 3325, 10.1016/j.msec.2013.04.014

Biesiekierski, 2012, A new look at biomedical Ti-based shape memory alloys, Acta Biomater., 8, 1661, 10.1016/j.actbio.2012.01.018