Supercycle in great earthquake recurrence along the Japan Trench over the last 4000 years
Tóm tắt
On the landward slope of the Japan Trench, the mid-slope terrace (MST) is located at a depth of 4000–6000 m. Two piston cores from the MST were analyzed to assess the applicability of the MST for turbidite paleoseismology and to find out reliable recurrence record of the great earthquakes along the Japan Trench. The cores have preserved records of ~ 12 seismo-turbidites (event deposits) during the last 4000 years. In the upper parts of the two cores, only the following earthquakes (magnitude M ~ 8 and larger) were clearly recorded: the 2011 Tohoku, the 1896 Sanriku, the 1454 Kyotoku, and the 869 Jogan earthquake. In the lower part of the cores, turbidites were deposited alternately in the northern and southern sites during the periods between concurrent depositional events occurring at intervals of 500–900 years. Considering the characteristics of the coring sites for their sensitivity to earthquake shaking, the concurrent depositional events likely correspond to a supercycle that follows giant (M ~ 9) earthquakes along the Japan Trench. Preliminary estimations of peak ground acceleration for the historical earthquakes recorded as the turbidites imply that each rupture length of the 1454 and 869 earthquakes was over 200 km. The earthquakes related to the supercycle have occurred over at least the last 4000 years, and the cycle seems to have become slightly shorter in recent years. Earthquakes off the Sanriku coast forming the alternative deposition of turbidites in the two cores have released a part of accumulated slip, as indicated by the turbidites deposited in only one core. Decreases in the release of accumulated slip have possibly caused the recent shortening of the supercycle.
Tài liệu tham khảo
Abe H, Sugeno Y, Chigama A (1990) Estimation of the height of the Sanriku Jogan 11 earthquake-tsunami (AD 869) in the Sendai Plain. Zisin 2nd ser 43:513–525 (in Japanese)
Ali M, Oda H, Hayashida A, Takemura K, Torii M (1999) Holocene paleomagnetic secular variation from Lake Biwa. Geophys J Int 136:218–228
Amante C, Eakins BW (2009) ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis. NOAA technical memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA. https://doi.org/10.7289/v5c8276m. Accessed 03 Mar 2015
Arai K, Inoue T, Ikehara K, Sasaki T (2014) Episodic subsidence and active deformation of the forearc slope along the Japan Trench near the epicenter of the 2011 Tohoku Earthquake. Earth Planet Sci Lett 408:9–15
Berger WH, Adelseck CG Jr, Mayer LA (1976) Distribution of carbonate in surface sediments of the Pacific Ocean. J Geophys Res 81:2617–2627
Cadet JP, Kobayashi K, Lallemand S, Jolivet L, Aubouin J, Bouleue J, Dubois J, Hotta H, Ishii T, Konishi K, Niitsuma N, Shimamura H (1987) Deep scientific dives in the Japan and Kuril Trenches. Earth Planet Sci Lett 83:313–328
DeMets C, Gordon RG, Argus DF (2010) Geologically current plate motions. Geophys J Int 181:1–80
Furumura T, Kennett BLN (2005) Subduction zone guided waves and the heterogeneity structure of the subducted plate: intensity anomalies in northern Japan. J Geophys Res 110:B10302. https://doi.org/10.1029/2004JB003486
Geshi N, Oishi M (2011) The 14C ages of the late Pleistocene-Holocene volcanic products erupted from the Haruna volcano. Bull Geol Surv Japan 62:177–184 (in Japanese)
Goldfinger C, Han Nelson C, Morey A, Johnson JE, Gutierrez-Pastor J, Eriksson AT, Karabanov E, Patton J, Gracia E, Enkin R, Dallimore A, Dunhill G, Vallier T (2012) Turbidite event history: methods and implications for paleoseismicity of the Cascadia subduction zone. USGS Prof Paper 1661-F, US Geol Surv, Reston. p 184
Gutierrez-Pastor J, Han Nelson C, Goldfinger C, Escutia C (2013) Sedimentology of seismo-turbidites off Cascadia and Northern California active tectonic continental margins, Northeast Pacific Ocean. Mar Geol 336:99–119
Hirakawa K (2012) Outsize tsunami sediments since last years along the Japan- and Kuril-Trench: a tentative idea on source and supercycle. Kagaku 82:172–181 (in Japanese)
Huang Z, Zhao D (2013) Mechanism of the 2011 Tohoku-oki earthquake (Mw 9.0) and tsunami: insight from seismic tomography. J Asian Earth Sci 70–71:160–168
Ikehara K, Kanamatsu T, Nagahashi Y, Strasser M, Fink H, Usami K, Irino T, Wefer G (2016) Documenting large earthquakes similar to the 2011 Tohoku-oki earthquake from sediments deposited in the Japan Trench over the past 1500 years. Earth Planet Sci Lett 445:48–56
Ikehara K, Usami K, Kanamatsu K, Danhara T, Yamashita T (2017) Three important Holocene tephras off the Pacific coast of the Tohoku region, Northeast Japan: implications for correlating onshore and offshore event deposits. Quat Int 456:138–156
Ishimura D (2017) Re-examination of the age of historical and paleo-tsunami deposits at Koyadori on the Sanriku Coast. Northeast Japan Geosci Lett 4:11. https://doi.org/10.1186/s40562-017-0077-4
Ishimura D, Miyauchi T (2015) Historical and paleo-tsunami deposits during the last 4000 years and their correlations with historical tsunami events in Koyadori on the Sanriku Coast, northeastern Japan. Prog Earth Planet Sci 2:16. https://doi.org/10.1186/s40645-015-0047-4
Kanamatsu T, Usami K, McHugh CMG, Ikehara K (2017) High-resolution chronology of sediment below CCD based on Holocene paleomagnetic secular variations in the Tohoku-oki earthquake rupture zone. Geochem Geophys Geosys 18:2990–3002. https://doi.org/10.1002/2017GC006878
Kanamori H (1972) Mechanism of tsunami earthquakes. Phys Earth Planet Interior 6:346–359
Kawamura K, Laberg JS, Kanamatsu T (2014) Potential tsunamigenic submarine landslides in active margins. Mar Geol 356:44–49
Kon’no E, Iwai J, Takayanagi Y, Nakagawa H, Onuki Y, Shibata T, Mii H, Kitamura N, Kotaka T, Kataoka J (1961) Geological observations of the Sanriku coastal region damaged by the tsunami due to the Chile earthquake in 1960, vol 52. Contr Inst Geol Paleont, Tohoku Univ, Sendai, pp 1–45 (in Japanese)
Koper KD, Hutko AR, Lay T, Ammon CJ, Kanamori H (2011) Frequency-dependent rupture process of the 2011 Mw 9.0 Tohoku Earthquake: comparison of short-period P wave backprojection images and broadband seismic rupture models. Earth Planet Space 63:599–602
Lay T, Kanamori H, Ammon CJ, Koper KD, Hutko AR, Ye L, Yue H, Rushing TM (2012) Depth-varying rupture properties of subduction zone megathrust faults. J Geophys Res 117:B04311. https://doi.org/10.1029/2011JB009133
McHugh CM, Kanamatsu T, Seeber L, Bopp R, Cormier M-H, Usami K (2016) Remobilization of surficial slope sediment triggered by the A.D. 2011 Mw 9 Tohoku-Oki earthquake and tsunami along the Japan Trench. Geology 44:391–394. https://doi.org/10.1130/G37650.1
Minoura K, Nakaya S (1991) Traces of tsunami preserved in inter-tidal lacustrine and marsh deposits; some examples from northeast Japan. J Geol 99:265–287
Minoura K, Imamura F, Sugawara D, Kono Y, Iwashita T (2001) The 869 Jogan tsunami deposit and recurrence interval of large-scale tsunami on the Pacific coast of northeast Japan. J Natr Dis Sci 23:83–88
Nakayama W, Takeo M (1997) Slip history of the 1994 Sanriku-haruka-oki, Japan, earthquake deduced from strong-motion data. Bull Seism Soc Am 87:918–931
Namegaya Y, Satake K (2014) Reexamination of the A.D. 869 Jogan earthquake size from tsunami deposit distribution, sumulated flow depth, and velocity. Geophys Res Lett 41:2297–2303
Namegaya Y, Yata T (2014) Tsunamis which affected the Pacific coast of eastern Japan in medieval times inferred from historical documents. Zisin 66:73–81
Ogawa Y, Fujikura K, Iwabuchi Y, Kaiho Y, Izumi N, Inoue A, Nogi Y, Taira K, Kimura T, Lee IT, Kodera T, Nagai S, Okano H, Ikegami A, Fujioka K, Kuwano T (1996) Dive report of “Shinkai 6500” 1995 Cruise at the Northern Japan Trench landward slope (Dives 272–277). Geomorphology, Geology and Biology of the Sanriku escarpment. J Deep Sea Res. 12:1–22 (in Japanese). http://www.godac.jamstec.go.jp/catalog/data/doc_catalog/media/shinkai12_01.pdf. Accessed 2 Jun 2017.
Ozawa S, Nishimura T, Suito H, Kobayashi T, Tobita M, Imakiire T (2011) Coseismic and postseismic slip of the 2011 magnitude-9 Tohoku-oki earthquake. Nature 475:373–376
Patton JR, Goldfinger C, Morey AE, Ikehara K, Romsos C, Stoner J, Djadjadiharja Y, Ardhyasturi SU, Gaffer EZ, Viscaino A (2015) A 6600 year earthquake history in the region of the 2004 Sumatra-Andaman subduction zone earthquake. Geosphere 11:1–62
Peirson DH (1971) Worldwide deposition of long-lived fission products from nuclear explosions. Nature 234:79–80
Polonia A, Panieri G, Gasperini L, Gasparotto A, Bellucci LG, Torelli L (2013) Turbidite paleoseismology in the Calabrian Arc subduction complex (Ionian Sea). Geochem Geophys Geosys 14:112–140
Pouderoux H, Proust JN, Lamarche G (2014) Submarine paleoseismology of the northern Hikurangi subduction margin of New Zealand as deduced from turbidite record since 16 ka. Quat Sci Rev 84:116–131
Reading HG, Richards M (1994) Turbidite systems in deep-water basin margins classified by grain size and feeder system. Bull Am Assoc Petrol Geol 78:792–822
Satake K (2015) Geological and historical evidence of irregular recurrent earthquakes in Japan. Phil Trans R Soc A 373:20140375
Satake K, Fujii Y (2014) Review: source models of the 2011 Tohoku Earthquake and long-term forecast of large earthquakes. J Disaster Res 9:272–280
Satake K, Namegaya Y, Yamaki S (2008) Numerical simulation of the A.D. 869 Jogan tsunami in Ishinomaki and Sendai plains. Ann Rep Active Fault Paleoearthq Res 8:71–89 (in Japanese)
Satake K, Namegaya Y, Yamaki S (2017) Different depths of near-trench slips of the 1896 Sanriku and 2011 Tohoku earthquakes. Geosci Lett 4:33
Sato R (1989) Handbook for Japanese Earthquake faults parameters. Kajima Institute Publishing, Tokyo
Sawai Y, Namegaya Y, Okamura Y, Satake K, Shishikura M (2012) Challenges of anticipating the 2011 Tohoku earthquake and tsunami using coastal geology. Geophys Res Lett. https://doi.org/10.1029/2012GL053692
Sawai Y, Namegaya Y, Tamura T, Nakashima R, Tanigawa K (2015) Shorter intervals between great earthquakes near Sendai: scour ponds and a sand layer attributable to A.D. 1454 overwash. Geophys Res Lett 42:4785–4800. https://doi.org/10.1002/2015GL064167
Seed HB, Idriss IM (1971) Simplified procedure for evaluating soil liquefaction potential. J Soil Mech Found Div 97:1249–1273
Shipboard Scientific Party (1980) Site 440: Japan Trench midslope terrace, Leg57. Init Rept DSDP 56&57:225–231
Si H, Midorikawa S (1999) New attenuation relationships for peak ground acceleration and velocity considering effects of fault type and site condition. J Struct Constr Eng 523:63–70 (in Japanese). https://www.jstage.jst.go.jp/article/aijs/64/523/64_KJ00004087596/_article/-char/en. Accessed 30 Mar 2018
Si H, Koketsu K, Miyake H (2016) Attenuation characteristics of strong ground motion from megathrust earthquakes in subduction zone—on the pass effects. J Japan Assoc Earthq Eng 16: 96–105 (in Japanese). https://www.jstage.jst.go.jp/article/jaee/16/1/16_1_96/_article/-char/en. Accessed 22 Feb 2018
Stow DAV, Shanmugam G (1980) Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments. Sed Geol 25:23–42
Suzuki W, Aoi S, Sekiguchi H, Kunugi T (2011) Rupture process of the 2011 Tohoku-Oki mega-thrust earthquake (M9.0) inverted from strong-motion data. Geophys Res Lett 38:L00G16. https://doi.org/10.1029/2011gl049136. Accessed 30 Mar 2018
Takada K, Shishikura M, Imai K, Ebina Y, Goto K, Koshiya S, Yamamoto H, Igarashi A, Ichihara T, Kinoshita H, Ikeda T, River division department of prefectural land development, Iwate prefecture government (2016) Distribution and ages of tsunami deposits along the Pacific coast of the Iwate Prefecture. Ann Rep Active Fault Paleoearthq Res 16:1–52 (in Japanese)
Tanioka Y, Satake K (1996) Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophys Res Lett 23:1522–1549
Tappin DR, Watts P, McMurtry GM, Lafoy Y, Matsumoto T (2001) The Sissano, Papua New Guinea tsunami of July 1998—offshore evidence on the source mechanism. Mar Geol 175:1–23
Toda S (2016) Crustal earthquakes. In: Moreno T, Wallis S, Kojima T, Gibbons W (eds) The geology of Japan. Geol Soc, London, pp 371–408
Tsuru T, Park JO, Miura S, Kodaira S, Kido Y, Hayashi T (2002) Along-arc structural variation of the plate boundary at the Japan Trench margin: implication of interplate coupling. J Geophys Res 107:ESE 11-1–ESE 11-15. https://doi.org/10.1029/2001JB001664
Uchida N, Iinuma T, Nadeau RM, Bürgmann R, Hino R (2016) Periodic slow slip triggers megathrust zone earthquakes in northeastern Japan. Science 351:488–492
von Huene R, Culotta R (1989) Tectonic erosion at the front of the Japan Trench convergent margin. Tectonophys 160:75–90
von Huene R, Lallemand SE (1990) Tectonic erosion along the Japan and Peru convergent margins. Geol Soc Am Bull 102:704–720
von Huene R, Langeseth N, Nasu N, Okada H (1980) Summary, Japan Trench transect. Initial Report of the DSDP 56–57, Pt. 1:473–488
Yamanaka Y, Kikuchi M (2004) Asperity map along the subduction zone in northeastern Japan inferred from regional seismic data. J Geophys Res. https://doi.org/10.1029/2003JB002683
Yoshida Y, Ueno H, Muto D, Aoki S (2011) Source process of the 2011 off the Pacific coast of Tohoku Earthquake with the combination of teleseismic and strong motion data. Earth Planets Space 63:565–569