Supercritical water gasification

Biofuels, Bioproducts and Biorefining - Tập 2 Số 5 - Trang 415-437 - 2008
Andrea Kruse1
1Forschungszentrum, Karlsruhe, Germany

Tóm tắt

AbstractThis article reviews the work relating to the supercritical water gasifi cation of biomass with a focus on hydrogen production. The high hydrogen yield predicted by thermodynamic calculations and the special properties of near‐ and supercritical water support the biomass degradation; these were the main reasons why the process of = supercritical water gasifi cation was investigated. The main advantage is that biomass, with a natural water content of 80 wt.% or more, can be converted without drying before. The energy required for heating up the relatively high water amount can be recovered by a compact heat exchanger, which is very important for the overall energy balance. The chemistry of biomass degradation is rather complex: from experiments with model compounds, the main reaction pathways and their dependencies on reaction conditions are identifi ed. This knowledge was applied in studies of biomass conversion. Biomass may include proteins and salts, which have a signifi cant infl uence on the gasifi cation: salts increase and proteins decrease the gas yield at comparable reactions conditions. In addition, the heating‐up rate and the reactor type used infl uence the results. For the scale‐up in view of a technical application, a bench‐scale plant is necessary. This plant exists for some years and demonstrates the process feasibility also in the scale of 100 kg/h. Still challenges for a technical application, like corrosion and solid handling, exist. © 2008 Society of Chemical Industry and John Wiley & Sons, Ltd

Từ khóa


Tài liệu tham khảo

Matsumura Y, 2005, Biomass gasification in near‐ and super‐critical water: Status and prospects, Biomass Bioenerg, 29, 269, 10.1016/j.biombioe.2005.04.006

10.1002/bbb.74

10.1021/ef00041a002

10.1021/ie0509490

10.1021/ie020557i

10.1021/ef700574k

10.1021/ef700497d

DiLeo GJ, 2007, Gasification of guaiacol and phenol in supercritical water, Energ Fuel, 21, 2340, 10.1021/ef070056f

10.1016/j.supflu.2006.12.006

10.1021/ie0202773

10.1002/elsc.200300054

Kruse A, Neue Konzepte zur Wasserstoffproduktion aus Kohlenhydraten durch hydrothermale Umwandlung., Habilitation thesis

AkgülG KruseAandOlzmannM The water gas shift reaction at hydrothermal conditions. 15th European Biomass Conference and Exhibition Berlin May 7–11 2007

10.1016/S0896-8446(98)00061-8

10.1080/00102200500292316

10.1016/j.supflu.2006.03.016

10.1002/anie.200462468

10.1021/cen-v069n051.p026

10.1016/0021-9614(87)90130-3

10.1016/S0896-8446(03)00031-7

10.1002/(SICI)1521-4052(199906)30:6<326::AID-MAWE326>3.0.CO;2-8

TolmanR Process for converting sewage sludge and municipal solid wastes to clean fuels. San Diego CA: Public Interest Energy Research (PIER) Grant 99‐04: California Energy Commission (2001).

BoukisN GallaU D'JesusPandDinjusE Production of hydrogen and methane from biomass in supercritical water. Joint 20th AIRAPT‐ 43rd EHPRG June 1 1927 to Jul 1 2005.

Steam Tables ‐ Thermodynamic and transport properties of steam [computer program]. Version 6. ASME: New York (1992).

10.1162/108819803323059415

Yoshida Y, 2003, Comprehensive comparison of efficiency and CO2 emissions between biomass energy conversion technologies‐position of supercritical water gasification in biomass technologies, Biomass Bioenerg, 25, 257, 10.1016/S0961-9534(03)00016-3

Antal MJ, 1978, Energy from Biomass and Wastes, 495

10.1016/j.cej.2004.12.021

10.1016/j.cej.2006.11.016

10.1016/j.enconman.2005.08.004

10.1021/ef00041a002

10.1016/j.enconman.2004.04.003

10.1002/er.1251

10.1016/j.cep.2004.01.004

10.1016/S0196-8904(02)00016-X

AminS ReidRCandModellM Reforming and decomposition of glucose in an aqueous phase.ASME Pap 75 ‐ENAs‐21(1975).

10.1007/978-94-009-4932-4_6

10.1016/0165-2370(85)80032-2

10.1016/0016-2361(87)90183-9

10.1007/978-94-009-2737-7_35

10.1021/jo00280a027

10.1021/bk-1989-0406.ch015

10.1016/0008-6215(90)84096-D

10.1016/0008-6215(90)84097-E

10.1021/ja00161a043

10.1016/0008-6215(91)84118-X

10.1021/ie00055a012

10.1021/ie00001a014

10.1016/0165-2370(93)80064-7

10.1021/ef00041a002

10.1002/aic.690400911

10.1021/i300015a029

10.1007/BF00902707

10.1016/j.fuel.2006.11.005

10.1021/ie00004a026

10.1021/ie990690j

10.1007/s10570-005-9008-1

10.1016/S0896-8446(98)00060-6

10.1039/B713655B

10.1016/S0896-8446(01)00105-X

10.1021/ie960250h

10.1007/BF02518929

10.1252/jcej.31.131

10.1016/0008-6215(93)80027-C

10.1016/0165-2370(93)00776-J

10.1021/ie9704354

10.1039/b203968k

10.1016/j.carres.2006.06.025

10.1021/ie051088y

10.1016/j.supflu.2005.04.004

Aida TM, 2007, Dehydration of d‐glucose in high temperature water at pressures up to 80 MPa, et al.,, 40, 381

Mok WS, 1987, Production of acrylic‐acid from lactic‐acid in supercritical water, Abstr Pap Am Chem S, 193, 43

10.1021/ie9806390

10.1021/ie960747r

10.1021/ie050830r

10.1021/ie050733y

10.1021/ef0503055

10.1002/aic.690410320

10.1021/ie010066i

10.1021/ef7002206

10.1021/ie030475

10.1021/ie030079r

10.1002/ceat.200700391

10.1021/ie950672b

10.1002/ep.670170411

10.1021/ie0003436

10.1088/0953-8984/16/14/045

10.1016/j.fuproc.2003.11.027

10.1021/ef0202844

10.1021/ie0001570

10.1016/j.biortech.2007.08.008

10.1016/j.jhazmat.2006.05.029

10.1016/j.supflu.2007.04.008

10.1021/ie070151b

10.1016/j.biortech.2007.08.024

10.1246/bcsj.76.1171

10.1007/BF02705501

10.1021/jp022477y

10.1021/jp0224766

10.1002/kin.10160

10.1021/ie0580699

10.1016/j.supflu.2005.03.001

10.1021/ie020733n

10.1016/j.biortech.2006.12.030

10.1016/j.orggeochem.2007.07.003

10.1252/jcej.36.441

10.1252/jcej.37.253

10.1021/cr020415y

10.1002/(SICI)1521-3773(19991018)38:20<2998::AID-ANIE2998>3.0.CO;2-L

10.1021/cr9700989

10.1021/ie034146t

10.1524/zpch.219.3.341.59177

10.1016/S0896-8446(99)00051-0

10.1021/i300011a009

10.1021/i300011a008

10.1016/S0360-3199(02)00056-3

10.1016/S0016-2361(02)00320-4

10.1021/ie0001570

10.1021/ie049129y

10.1021/ie061047h

10.1021/ie0101590

10.1021/ie950672b

10.1016/S0378-3812(01)00668-9

10.1021/ef060233x

10.1016/j.carres.2005.05.019

10.1080/00986440500440157

10.1023/A:1021192711007

10.1021/ie0508637

10.1021/ie0209430

10.1002/ceat.200600409

10.1016/j.fuel.2007.01.025

10.1016/j.ijhydene.2005.08.011

10.1021/ie060900

10.1016/j.fuel.2005.10.022

10.1021/ie050367i

10.1016/j.biombioe.2007.05.002

10.1021/ie010066i

10.1016/j.ijhydene.2006.10.026

Diem V, 2004, Hydrothermal reforming of alcohols and bio crude oil, Chem Eng Trans, 4, 99

10.1016/j.ijhydene.2006.06.027

Yan B, 2006, Supercritical gasification for the treatment of o‐cresol wastewater, J Environ Sci (China), 18, 644

10.1016/S1001-0742(07)60232-0

BoukisN GallaU MüllerHandDinjusE Biomass gasification in supercritical water. Experimental progress achieved with the VERENA pilot plant.15th European Conference & Exhibition; May 7 2007 Berlin Germany 2008 pp. 1013–1016.

10.1016/j.biombioe.2004.06.011

10.1016/j.cej.2006.08.001

DinjusE KruseA SinagAandPfeifferJ Verfahren zur Umsetzung von Biomasse in gasförmige Produkte. DE Patent 102004038491 (2006).

DahmenN DinjusEandKruseA Verfahren zu Behandlung von Biomasse. DE Patent 10259928 (2005).

10.1007/s00604-003-0127-9

10.1002/maco.200390072

10.5006/1.3294394

10.1023/A:1026714218522

10.1016/j.corsci.2005.08.021

BoukisN FranzG HabichtWandDinjusE Corrosion in supercritical water containing hydrochloric acid and oxygen – problem solutions EUROCORR 2000 London UK 10–14 September 2000.

BoukisN FranzG HabichtWandDinjusE Corrosion resistant materials for SCWO‐applications. Experimental results from long‐time experiments. NACE Corrosion 2001 USA Paper No. 01353.

10.1021/ie0003436

10.1016/j.supflu.2007.03.009

10.1016/j.supflu.2007.08.003

10.1016/j.biortech.2004.06.025

10.1016/S0960-8524(01)00103-1