Supercritical fluids processing of polymers for pharmaceutical and medical applications

The Journal of Supercritical Fluids - Tập 47 - Trang 484-492 - 2009
Ernesto Reverchon1, Renata Adami1, Stefano Cardea1, Giovanna Della Porta1
1Dipartimento di Ingegneria Chimica e Alimentare, Università di Salerno, Via Ponte don Melillo, I-84084 Fisciano, Italy

Tài liệu tham khảo

Langer, 1993, Tissue engineering, Science (Washington DC, United States), 260, 920, 10.1126/science.8493529 Fuchs, 2001, Tissue engineering: a 21st century solution to surgical reconstruction, Ann. Thorac. Surg., 72, 577, 10.1016/S0003-4975(01)02820-X Reverchon, 2006, Nanomaterials and supercritical fluids, J. Supercrit. Fluids, 37, 1, 10.1016/j.supflu.2005.08.003 P. York, S.A. Wilkins, R.A. Storey, S.E. Walker, R.S. Harland, Coformulation of drugs and oligomeric or polymeric excipients, WO A2 2001015664 (20010308). R.B. Gupta, P. Chattopadhyay, Method of forming nanoparticles and microparticles of controllable size using supercritical fluids and ultrasound, US A1 2,002,000,681 (20020103). B. Subramaniam, S. Said, R.A. Rajewski, V. Stella, Methods and apparatus for particle precipitation and coating using near-critical and supercritical antisolvents, WO A1 9731691 (19970904). Mawson, 1997, Coaxial nozzle for control of particle morphology in precipitation with a compressed fluid antisolvent, J. Appl. Polym. Sci., 64, 2105, 10.1002/(SICI)1097-4628(19970613)64:11<2105::AID-APP6>3.0.CO;2-N Palakodaty, 1998, Supercritical fluid processing of materials from aqueous solutions: the application of SEDS to lactose as a model substance, Pharm. Res., 15, 1835, 10.1023/A:1011949805156 Bleich, 1994, Influence of gas density and pressure on microparticles produced with the ASES process, Int. J. Pharm., 106, 77, 10.1016/0378-5173(94)90278-X Bahrami, 2007, Production of micro- and nano-composite particles by supercritical carbon dioxide, J. Supercrit. Fluids, 40, 263, 10.1016/j.supflu.2006.05.006 Tandya, 2007, Dense gas processing of polymeric controlled release formulations, Int. J. Pharm., 328, 1, 10.1016/j.ijpharm.2006.08.016 Reverchon, 2008, Spherical microparticles production by supercritical antisolvent precipitation: interpretation of results, J. Supercrit. Fluids, 47, 70, 10.1016/j.supflu.2008.06.002 Reverchon, 2007, Nanoparticles production by supercritical antisolvent precipitation: a general interpretation, J. Supercrit. Fluids, 43, 126, 10.1016/j.supflu.2007.04.013 Reverchon, 2008, Expanded micro-particles by supercritical antisolvent precipitation: interpretation of results, J. Supercrit. Fluids, 44, 98, 10.1016/j.supflu.2007.08.008 Sarkari, 2000, Generation of microparticles using CO2 and CO2-philic antisolvents, AIChE J., 46, 1850, 10.1002/aic.690460913 T.M. Martin, N. Bandi, R. Shulz, C.B. Roberts, U.B. Kompella, Preparation of budesonide and budesonide-PLA microparticles using supercritical fluid precipitation technology, AAPS PharmSciTech, 3 (2002). Elvassore, 2001, Production of protein-loaded polymeric microcapsules by compressed CO2 in a mixed solvent, Ind. Eng. Chem. Res., 40, 795, 10.1021/ie0004904 Bitz, 1996, Influence of the preparation method on residual solvents in biodegradable microspheres, Int. J. Pharm., 131, 171, 10.1016/0378-5173(95)04320-9 Tom, 1991, Particle formation with supercritical fluids—a review, J. Aerosol Sci., 22, 555, 10.1016/0021-8502(91)90013-8 R.G. Gupta, J.-J. Shim, Solubility in supercritical carbon dioxide, CRC Press Taylor and Francis Group, Boca Raton, FL, 2007. Mishima, 2000, Microencapsulation of proteins by rapid expansion of supercritical solution with a nonsolvent, AIChE J., 46, 857, 10.1002/aic.690460418 Matsuyama, 2003, Formation of microcapsules of medicines by the rapid expansion of a supercritical solution with a nonsolvent, J. Appl. Polym. Sci., 89, 742, 10.1002/app.12201 E. Weidner, Z. Knez, Z. Novak, Process for preparation of particles or powders, WO A1 9521688 (19950817). Knez, 2003, Particles formation and particle design using supercritical fluids, Curr. Opin. Solid State Mater. Sci., 7, 353, 10.1016/j.cossms.2003.11.002 Sencar-Bozic, 1997, Improvement of nifedipine dissolution characteristics using supercritical CO2, Int. J. Pharm., 148, 123, 10.1016/S0378-5173(96)04838-7 R.E. Sievers, U. Karst, Methods for fine particle formation, USA 5,639,441 (19970617). Sievers, 1999, Formation of aqueous small droplet aerosols assisted by supercritical carbon dioxide, Aerosol Sci. Technol., 30, 3, 10.1080/713834046 Sievers, 2000, Supercritical and near-critical carbon dioxide assisted low-temperature bubble drying, Ind. Eng. Chem. Res., 39, 4831, 10.1021/ie000190m Reverchon, 2002, Supercritical-assisted atomization to produce micro- and/or nanoparticles of controlled size and distribution, Ind. Eng. Chem. Res., 41, 2405, 10.1021/ie010943k Villa, 2005, Synthesis of composite microparticles with a mixing cross, Aerosol Sci. Technol., 39, 473, 10.1080/027868290964432 Burger, 2008, Stabilizing formulations for inhalable powders of live-attenuated measles virus vaccine, J. Aerosol Med. Pulmonary Drug Deliv., 21, 25, 10.1089/jamp.2007.0658 Reverchon, 2007, Drug-polymer microparticles produced by supercritical assisted atomization, Biotechnol. Bioeng., 97, 1626, 10.1002/bit.21370 Reverchon, 2008, Supercritical fluid assisted production of HPMC composite microparticles, J. Supercrit. Fluids, 46, 185, 10.1016/j.supflu.2008.04.010 Reverchon, 2003, Ampicillin micronization by supercritical assisted atomization, J. Pharm. Pharmacol., 55, 1465, 10.1211/0022357022043 Reverchon, 2006, Chitosan microparticles production by supercritical fluid processing, Ind. Eng. Chem. Res., 45, 5722, 10.1021/ie060233k Chattopadhyay, 2006, Drug encapsulation using supercritical fluid extraction of emulsions, J. Pharm. Sci., 95, 667, 10.1002/jps.20555 Shekunov, 2006, Nanoparticles of poorly water-soluble drugs prepared by supercritical fluid extraction of emulsions, Pharm. Res., 23, 196, 10.1007/s11095-005-8635-4 Chattopadhyay, 2007, Production of solid lipid nanoparticle suspensions using supercritical fluid extraction of emulsions (SFEE) for pulmonary delivery using the AERx system, Adv. Drug. Deliv. Rev., 59, 444, 10.1016/j.addr.2007.04.010 M. Perrut, J. Jung, F. Leboeuf, Method for obtaining solid particles from a water-soluble product, WO A1 2002092213 (20021121). Della Porta, 2008, Nanostructured microspheres produced by supercritical fluid extraction of emulsions, Biotechnol. Bioeng., 100, 1020, 10.1002/bit.21845 Della Porta, 2008, Comparison between SC-CO2 extraction and solvent evaporation of o/w emulsions for drug–polymer microspheres production Stamatialis, 2008, Medical applications of membranes: drug delivery, artificial organs and tissue engineering, J. Membr. Sci., 308, 1, 10.1016/j.memsci.2007.09.059 van de Witte, 1996, Phase separation processes in polymer solutions in relation to membrane formation, J. Membr. Sci., 117, 1, 10.1016/0376-7388(96)00088-9 Reverchon, 2004, Formation of cellulose acetate membranes using a supercritical fluid assisted process, J. Membr. Sci., 240, 187, 10.1016/j.memsci.2004.04.020 Matsuyama, 2002, Effect of organic solvents on membrane formation by phase separation with supercritical CO2, J. Membr. Sci., 204, 81, 10.1016/S0376-7388(02)00018-2 Kho, 2001, Precipitation of Nylon 6 membranes using compressed carbon dioxide, Polymer, 42, 6119, 10.1016/S0032-3861(01)00067-2 Cardea, 2006, Generation of PEEK-WC membranes by supercritical fluids, Desalination, 200, 58, 10.1016/j.desal.2006.03.241 Xu, 2004, Application of supercritical carbon dioxide in the preparation of biodegradable polylactide membranes, J. Appl. Polym. Sci., 94, 2158, 10.1002/app.21132 Peng, 2005, Supercritical CO2-assisted synthesis of poly(acrylic acid)/Antheraea pernyi SF blend, J. Appl. Polym. Sci., 98, 864, 10.1002/app.22186 Reverchon, 2006, Flexible supercritical CO2-assisted process for poly(methyl methacrylate) structure formation, Polym. Eng. Sci., 46, 188, 10.1002/pen.20438 Matsuyama, 2001, Formation of porous flat membrane by phase separation with supercritical CO2, J. Membr. Sci., 194, 157, 10.1016/S0376-7388(01)00436-7 Reverchon, 2005, Formation of polysulfone membranes by supercritical CO2, J. Supercrit. Fluids, 35, 140, 10.1016/j.supflu.2004.12.007 Temtem, 2006, Solvent power and depressurization rate effects in the formation of polysulfone membranes with CO2-assisted phase inversion method, J. Membr. Sci., 283, 244, 10.1016/j.memsci.2006.06.037 Temtem, 2008, Preparation of membranes with polysulfone/polycaprolactone blends using a high pressure cell specially designed for a CO2-assisted phase inversion, J. Supercrit. Fluids, 43, 542, 10.1016/j.supflu.2007.07.012 Kim, 2004, Characteristics of porous polycarbonate membrane with polyethylene glycol in supercritical CO2 and effect of its porosity on tearing stress, J. Supercrit. Fluids, 31, 217, 10.1016/j.supflu.2003.12.002 Reverchon, 2007, Formation of poly-vinyl-alcohol structures by supercritical CO2, J. Appl. Polym. Sci., 104, 3151, 10.1002/app.26077 Reverchon, 2006, PVDF-HFP membrane formation by supercritical CO2 processing: elucidation of formation mechanisms, Ind. Eng. Chem. Res., 45, 8939, 10.1021/ie051396w Cao, 2005, Preparation and characterization of PVDF-HFP microporous flat membranes by supercritical CO2 induced phase separation, J. Membr. Sci., 266, 102, 10.1016/j.memsci.2005.05.015 Huang, 2007, Preparation of microporous poly(vinylidene fluoride) membranes via phase inversion in supercritical CO2, J. Membr. Sci., 293, 100, 10.1016/j.memsci.2007.02.001 Li, 2008, Preparation and characterization of microporous poly(vinyl butyral) membranes by supercritical CO2-induced phase separation, J. Membr. Sci., 312, 115, 10.1016/j.memsci.2007.12.043 Padilla, 2002, In vitro release of gentamicin from OHAp/PEMA/PMMA samples, J. Control Rel., 83, 343, 10.1016/S0168-3659(02)00168-2 Reverchon, 2006, Production of loaded PMMA structures using the supercritical CO2 phase inversion process, J. Membr. Sci., 273, 97, 10.1016/j.memsci.2005.09.042 Ryoo, 2005, Electrostatic stabilization of colloids in carbon dioxide: electrophoresis and dielectrophoresis, Langmuir, 21, 5914, 10.1021/la046770w Ryoo, 2006, Long-ranged electrostatic repulsion and crystallization of emulsion droplets in an Ultralow dielectric medium supercritical carbon dioxide, Langmuir, 22, 1006, 10.1021/la052298i Lee, 1999, Water-in-carbon dioxide emulsions: formation and stability, Langmuir, 15, 6781, 10.1021/la9903548 Cooper, 2003, Porous materials and supercritical fluids, Adv. Mater., 15, 1049, 10.1002/adma.200300380 Butler, 2001, Emulsion templating using high internal phase supercritical fluid emulsions, Adv. Mater., 13, 1459, 10.1002/1521-4095(200110)13:19<1459::AID-ADMA1459>3.0.CO;2-K Butler, 2003, Synthesis of porous emulsion-templated polymers using high internal phase CO2-in-water emulsions, J. Am. Chem. Soc., 125, 14473, 10.1021/ja037570u Partap, 2006, Supercritical carbon dioxide in water emulsion-templated synthesis of porous calcium alginate hydrogels, Adv. Mater., 18, 501, 10.1002/adma.200501423 Liu, 2003, Polymeric scaffolds for bone tissue engineering, Ann. Biomed. Eng., 32, 477, 10.1023/B:ABME.0000017544.36001.8e Ma, 2004, Scaffolds for tissue fabrication, Mater. Today (Oxford, United Kingdom), 7, 30, 10.1016/S1369-7021(04)00233-0 Mooney, 1996, Novel approach to fabricate porous sponges of poly(dl-lactic-co-glycolic acid) without the use of organic solvents, Biomaterials, 17, 1417, 10.1016/0142-9612(96)87284-X Harris, 1998, Open pore biodegradable matrixes formed with gas foaming, J. Biomed. Mater. Res., 42, 396, 10.1002/(SICI)1097-4636(19981205)42:3<396::AID-JBM7>3.0.CO;2-E Sheridan, 2000, Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery, J. Control Rel., 64, 91, 10.1016/S0168-3659(99)00138-8 Barry, 2004, Porous methacrylate scaffolds: supercritical fluid fabrication and in vitro chondrocyte responses, Biomaterials, 25, 3559, 10.1016/j.biomaterials.2003.10.023 Singh, 2004, Generation of porous microcellular 85/15 poly (dl-lactide-co-glycolide) foams for biomedical applications, Biomaterials, 25, 2611, 10.1016/j.biomaterials.2003.09.040 Quirk, 2005, Supercritical fluid technologies and tissue engineering scaffolds, Curr. Opin. Solid State Mater. Sci., 8, 313, 10.1016/j.cossms.2003.12.004 Barry, 2005, Supercritical carbon dioxide foaming of elastomer/heterocyclic methacrylate blends as scaffolds for tissue engineering, J. Mater. Chem., 15, 4881, 10.1039/b507722m Mathieu, 2005, Bioresorbable composites prepared by supercritical fluid foaming, J. Biomed. Mater. Res. A, 75, 89, 10.1002/jbm.a.30385 Barry, 2006, Porous methacrylate tissue engineering scaffolds: using carbon dioxide to control porosity and interconnectivity, J. Mater. Sci., 41, 4197, 10.1007/s10853-006-7023-8 Mathieu, 2006, Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering, Biomaterials, 27, 905, 10.1016/j.biomaterials.2005.07.015 Wang, 2006, A method for solvent-free fabrication of porous polymer using solid-state foaming and ultrasound for tissue engineering applications, Biomaterials, 27, 1924, 10.1016/j.biomaterials.2005.09.029 Tsivintzelis, 2007, Porous scaffolds prepared by phase inversion using supercritical CO2 as antisolvent, J. Supercrit. Fluids, 40, 317, 10.1016/j.supflu.2006.06.001 Tsivintzelis, 2007, Porous poly(l-lactic acid) nanocomposite scaffolds prepared by phase inversion using supercritical CO2 as antisolvent, Polymer, 48, 6311, 10.1016/j.polymer.2007.08.021 Reverchon, 2008, A new supercritical fluid-based process to produce scaffolds for tissue replacement, J. Supercrit. Fluids, 45, 365, 10.1016/j.supflu.2008.01.005 E. Reverchon, Process for producing hollow capillary polymeric membranes for the treatment of blood and its derivatives, WO A1 2005099878 (20051027). Reverchon, 2008, Nanostructured polymers for scaffolding applications Levit, 2004, Supercritical CO2-assisted electrospinning, J. Supercrit. Fluids, 31, 329, 10.1016/j.supflu.2003.12.008 Montero, 2008, High pressure supercritical CO2 assisted melt spinning