Supercritical fluid extraction of polyphenols from lees: overall extraction curve, kinetic data and composition of the extracts
Tóm tắt
The increasing incidence of degenerative diseases has attracted the interest in the obtaining of bioactive compounds. Since seeds and skins from grapes are important sources of polyphenols which have been associated with cancer incidence decreasing, then, one of the pisco (alcoholic beverage made of grape) manufacturing byproduct such as lees, could be a potential source of polyphenols. Supercritical fluid extraction is an environmentally friendly technique that has been applied for obtaining polyphenols. Carbon dioxide is used as unique or main extraction solvent instead of organic solvents, most of them toxics and responsible for reducing the application fields of the extracts. For that reason, among others, supercritical fluid extraction is preferred over conventional techniques for obtaining bioactive compounds. The aim of this work was to study the supercritical fluid extraction of polyphenols from lees of pisco-making. Supercritical carbon dioxide with 10 % of ethanol (w/w) was used as extraction solvent. Overall extraction curves were determined at 20 and 35 MPa; and the experimental data were used to estimate the kinetic parameters. Conventional techniques using ethanol as extraction solvent were performed for comparative purposes. The extracts were analyzed by thin-layer and high-performance liquid chromatography. Lower global yield was obtained by supercritical fluid extraction than conventional techniques. From the kinetic parameters, the mass transfer rate and the amount of the extract dissolved in supercritical phase were higher at 20 than 35 MPa. Phenolic acids (gallic, protocatechuic, vanillic, syringic, ferulic derivatives and p-coumaric derivatives) and flavonoids (quercetin and its derivatives) were identified in the extracts obtained by all extraction techniques. Polyphenols were rapidly extracted with supercritical fluid and more concentrated extracts were obtained at 20 MPa. However, for longer extraction times, the highest values of extracted polyphenols were obtained by conventional techniques. Lees from pisco-making are a promising source for recovery polyphenols. Low global yields were obtained when elevated pressures were used. Although supercritical fluid extraction at 20 MPa was the most efficient technique on the extraction of polyphenols from lees of pisco-making due to highly concentrated polyphenols, extracts were rapidly obtained.
Tài liệu tham khảo
Adil IH, Cetin HI, Yener ME, Bayindirli A (2007) Subcritical (carbon dioxide plus ethanol) extraction of polyphenols from apple and peach pomaces, and determination of the antioxidant activities of the extracts. J Supercrit Fluids 43:55–63
Alonso ÁM, Guillén DA, Barroso CG, Puertas B, García A (2002) Determination of antioxidant activity of wine byproducts and its correlation with polyphenolic content. J Agric Food Chem 50:5832–5836
AOAC International (1997) Official methods of analysis of AOAC International, vol 16. Association of Analytical Communities, Washington
ASAE (2008) Method of determining and expressing fineness of feed materials by sieving. American Society of Agricultural Engineers Standards, Michigan.
Brunner G (2005) Supercritical fluids: technology and application to food processing. J Food Eng 67:21–33
Bustamante MA, Moral R, Paredes C, Perez-Espinosa A, Moreno-Caselles J, Perez-Murcia MD (2008) Agrochemical characterisation of the solid by-products and residues from the winery and distillery industry. Waste Manag (Oxf) 28:372–380
Campos LMAS, Leimann FV, Pedrosa RC, Ferreira SRS (2008) Free radical scavenging of grape pomace extracts from Cabernet Sauvingnon (Vitis vinifera). Bioresour Technol 99:8413–8420
Cardenas-Toro FP, Alcázar-Alay SC, Coutinho JP, Godoy HT, Forster-Carneiro T, Meireles MAA (2015) Pressurized liquid extraction and low-pressure solvent extraction of carotenoids from pressed palm fiber: experimental and economical evaluation. Food Bioprod Process 94:90–100
Cardoso LC, Serrano CM, Quintero ET, Lopez CP, Antezana RM, de la Ossa EJM (2013) High pressure extraction of antioxidants from Solanum stenotomun peel. Molecules 18:3137–3151
Da Porto C, Natolino A, Decorti D (2014) Extraction of proanthocyanidins from grape marc by supercritical fluid extraction using CO2 as solvent and ethanol–water mixture as co-solvent. J Supercrit Fluids 87:59–64
Delgado Adamez J, Gamero Samino E, Valdes Sanchez E, Gonzalez-Gomez D (2012) In vitro estimation of the antibacterial activity and antioxidant capacity of aqueous extracts from grape-seeds (Vitis vinifera L.). Food Control 24:136–141
Devesa-Rey R, Vecino X, Varela-Alende JL, Barral MT, Cruz JM, Moldes AB (2011) Valorization of winery waste vs. the costs of not recycling. Waste Manag (Oxf) 31:2327–2335
Farias-Campomanes AM (2012) Recovery of bioactive compounds by supercritical and conventional extraction from grape wastes of pisco industry. Dissertation, University of Campinas, Brazil
Farias-Campomanes AM, Meireles MAA (2013) Pisco bagasse as a potential source of bioactive compounds—a review. Recent Pat Eng 7:41–50
Farias-Campomanes AM, Rostagno MA, Meireles MAA (2013) Production of polyphenol extracts from grape bagasse using supercritical fluids: yield, extract composition and economic evaluation. J Supercrit Fluids 77:70–78
García-Lafuente A, Guillamón E, Villares A, Rostagno MA, Martínez JA (2009) Flavonoids as anti-inflammatory agents: implications in cancer and cardiovascular disease. Inflamm Res 58:537–552
Íçen H, Gürü M (2010) Effect of ethanol content on supercritical carbon dioxide extraction of caffeine from tea stalk and fiber wastes. J Supercrit Fluids 55:156–160
Jia-Jiuan W, Jung-Chuan L, Chih-Hung W, Ting-Ting J, Hsing-Ling Y, Shi-Lan H, Chieh-ming JC (2009) Extraction of antioxidative compounds from wine lees using supercritical fluids and associated anti-tyrosinase activity. J Supercrit Fluids 50:33–41
Kumoro AC, Hasan M (2007) Supercritical carbon dioxide extraction of Andrographolide from Andrographis paniculata: effect of the solvent flow rate, pressure and temperature. Chin J Chem 15:877–883
Meireles MAA (2007) Extraction of Bioactive Compounds from Latin American Plants. In: Martinez JL (ed) Supercritical fluid extraction of nutraceuticals and bioactive compounds. CRC Press-Taylor and Francis Group, Boca Raton
Mena P, Ascacio-Valdés JA, Gironés-Vilaplana A, Del Rio D, Moreno DA, García-Viguera C (2014) Assessment of pomegranate wine lees as a valuable source for the recovery of (poly)phenolic compounds. Food Chem 145:327–334
Michels KB, Schulze MB (2005) Can dietary patterns help us detect diet-disease associations? Nutr Res Rev 18:241–248
Mukhopadhyay M (2000) Natural extracts using supercritical carbon dioxide. CRC Press, New York
Naziri E, Nenadis N, Mantzouridou FT, Tsimidou MZ (2004) Valorization of the major agrifood industrial by-products and waste from Central Macedonia (Greece) for the recovery of compounds for food applications. Food Res Int 65:350–358
Oliveira DA (2010) Phytochemical and biological characterization of the extracts obtained from grape marc (Vitis vinifera) of the varieties Merlot and Syrah. Dissertation, Federal University of Santa Catarina, Brazil
Pérez-Serradilla JA, Luque de Castro MD (2008) Role of lees in wine production: a review. Food Chem 111:447–456
Pérez-Serradilla JA, Luque de Castro MD (2011) Microwave-assisted extraction of phenolic compounds from wine lees and spray-drying of the extract. Food Chem 124:1652–1659
Prado JM, Dalmolin I, Carareto NDD, Basso RC, Meirelles AJA, Vladimir Oliveira J, Batista EAC, Meireles MAA (2012) Supercritical fluid extraction of grape seed: process scale-up, extract chemical composition and economic evaluation. J Food Eng 109:249–257
Rostagno MA, Manchon N, D’Arrigo M, Guillamon E, Villares A, Garcia-Lafuente A, Ramos A, Martinez JA (2011) Fast and simultaneous determination of phenolic compounds and caffeine in teas, mate, instant coffee, soft drink and energetic drink by high-performance liquid chromatography using a fused-core column. Anal Chim Acta 685:204–211
Santos DT, Veggi PC, Meireles MAA (2012) Optimization and economic evaluation of pressurized liquid extraction of phenolic compounds from jabuticaba skins. J Food Eng 108:444–452
Shi J, Yu J, Pohorly JE, Kakuda Y (2003) Polyphenolics in grape seeds—biochemistry and functionality. J Med Food 6:291–299
Silva LM (2003) Caracterização dos subprodutos da vinificação. Rev Millen 28:123–133
Takeuchi TM (2009) Supercritical extraction of macela, clove and vetiver: technological and economical aspects. Dissertation, University of Campinas, Brazil
Wagner H, Blad S (1996) Plant drug analysis: a thin layer chromatography atlas, 2nd edn. Springer, Munich
Xia EQ, Deng GF, Guo YJ, Li HB (2010) Biological activities of polyphenols from grapes. Int J Mol Sci 11:622–646
Yang T, Di W, Qing-An Z, Da-Wen S (2014) Ultrasound-assisted extraction of phenolics from wine lees: modeling, optimization and stability of extracts during storage. Ultrason Sonochem 21:706–715
Zamora-Ros R, Rabassa M, Llorach R, González CA, Andres-Lacueva C (2012) Application of dietary phenolic biomarkers in epidemiology: past, present, and future. J Agric Food Chem 60:6648–6657