Supercritical fluid extraction of coriander seeds: Kinetics modelling and ANN optimization

The Journal of Supercritical Fluids - Tập 125 - Trang 88-95 - 2017
Zoran Zeković1, Oskar Bera1, Saša Đurović1, Branimir Pavlić1
1University of Novi Sad, Faculty of Technology, Bulevar Cara Lazara 1, 21000 Novi Sad, Serbia

Tài liệu tham khảo

Uquiche, 2012, Effect of boldo (Peumus boldus M.) pretreatment on kinetics of supercritical CO2 extraction of essential oil, J. Food Eng., 109, 230, 10.1016/j.jfoodeng.2011.10.013 Jesus, 2014, Supercritical fluid extraction: a global perspective of the fundamental concepts of this eco-friendly extraction technique, 39, 10.1007/978-3-662-43628-8_3 Brunner, 1994, Gas extraction: an introduction to fundamentals of supercritical fluids and the application to separation processes, Top. Phys. Chem., 10.1007/978-3-662-07380-3 Brunner, 2005, Supercritical fluids: technology and application to food processing, J. Food Eng., 67, 21, 10.1016/j.jfoodeng.2004.05.060 Rodrigues, 2003, Supercritical extraction of essential oil from aniseed (Pimpinella anisum L.) using CO2: solubility, kinetics, and composition data, J. Agric. Food Chem., 51, 1518, 10.1021/jf0257493 Mhemdi, 2011, A supercritical tuneable process for the selective extraction of fats and essential oil from coriander seeds, J. Food Eng., 105, 609, 10.1016/j.jfoodeng.2011.03.030 Dima, 2016, Supercritical CO2 extraction and characterization of Coriandrum sativum L. essential oil, J. Food Process Eng., 39, 204, 10.1111/jfpe.12218 Coşkuner, 2007, Physical properties of coriander seeds (Coriandrum sativum L.), J. Food Eng., 80, 408, 10.1016/j.jfoodeng.2006.02.042 Grosso, 2008, Supercritical carbon dioxide extraction of volatile oil from Italian coriander seeds, Food Chem., 111, 197, 10.1016/j.foodchem.2008.03.031 Pavlić, 2015, Isolation of coriander (Coriandrum sativum L.) essential oil by green extractions versus traditional techniques, J. Supercrit. Fluids, 99, 23, 10.1016/j.supflu.2015.01.029 Zeković, 2015, Coriander seeds processing: sequential extraction of non-polar and polar fractions using supercritical carbon dioxide extraction and ultrasound-assisted extraction, Food Bioprod. Process., 95, 218, 10.1016/j.fbp.2015.05.012 Zeković, 2016, Supercritical fluid extraction of coriander seeds: process optimization, chemical profile and antioxidant activity of lipid extracts, Ind. Crops Prod., 94, 353, 10.1016/j.indcrop.2016.09.008 Zeković, 2016, Optimization of ultrasound-assisted extraction of polyphenolic compounds from coriander seeds using response surface methodology, Acta Period. Technol., 249, 10.2298/APT1647249Z Zeković, 2016, Optimization of microwave-assisted extraction (MAE) of coriander phenolic antioxidants – response surface methodology approach, J. Sci. Food Agric., 96, 4613, 10.1002/jsfa.7679 Zeković, 2016, Chemical characterization of polyphenols and volatile fraction of coriander (Coriandrum sativum L.) extracts obtained by subcritical water extraction, Ind. Crops Prod., 87, 54, 10.1016/j.indcrop.2016.04.024 Garson, 1991, Interpreting neural network connection weights, AI Expert, 6, 46 Yoon, 1993, A comparison of discriminant analysis versus artificial neural networks, J. Oper. Res. Soc., 44, 51, 10.1057/jors.1993.6 Tchaban, 1998, Establishing impacts of the inputs in a feedforward neural network, Neural Comput. Appl., 7, 309, 10.1007/BF01428122 Olden, 2002, Illuminating the “black box”: a randomization approach for understanding variable contributions in artificial neural networks, Ecol. Model., 154, 135, 10.1016/S0304-3800(02)00064-9 Gevrey, 2003, Review and comparison of methods to study the contribution of variables in artificial neural network models, Ecol. Model., 160, 249, 10.1016/S0304-3800(02)00257-0 Shokri, 2011, Near critical carbon dioxide extraction of Anise (Pimpinella Anisum L.) seed: mathematical and artificial neural network modelling, J. Supercrit. Fluids, 58, 49, 10.1016/j.supflu.2011.04.011 Zahedi, 2011, Optimization of supercritical carbon dioxide extraction of Passiflora seed oil, J. Supercrit. Fluids, 58, 40, 10.1016/j.supflu.2011.04.013 Khajeh, 2012, Application of artificial neural network in predicting the extraction yield of essential oils of Diplotaenia cachrydifolia by supercritical fluid extraction, J. Supercrit. Fluids, 69, 91, 10.1016/j.supflu.2012.05.006 Azmir, 2014, Supercritical carbon dioxide extraction of highly unsaturated oil from Phaleria macrocarpa seed, Food Res. Int., 65, 394, 10.1016/j.foodres.2014.06.049 Kuvendziev, 2014, Artificial neural network modelling of supercritical fluid CO2 extraction of polyunsaturated fatty acids from common carp (Cyprinus carpio L.) viscera, J. Supercrit. Fluids, 92, 242, 10.1016/j.supflu.2014.06.007 Sodeifian, 2016, Optimization of essential oil extraction from Launaea acanthodes Boiss: utilization of supercritical carbon dioxide and cosolvent, J. Supercrit. Fluids, 116, 46, 10.1016/j.supflu.2016.05.015 Pekić, 1995, Behavior of (−)-α-Bisabolol and (−)-α-Bisabololoxides A and B in camommile flower extraction with supercritical carbon dioxide, Sep. Sci. Technol., 30, 3567, 10.1080/01496399508015137 Esquıvel, 1999, Mathematical models for supercritical extraction of olive husk oil, J. Supercrit. Fluids, 16, 43, 10.1016/S0896-8446(99)00014-5 Naik, 1989, Extraction of perfumes and flavours from plant materials with liquid carbon dioxide under liquid–vapor equilibrium conditions, Fluid Phase Equilib., 49, 115, 10.1016/0378-3812(89)80009-3 Papamichail, 2000, Supercritical fluid extraction of celery seed oil, J. Supercrit. Fluids, 18, 213, 10.1016/S0896-8446(00)00066-8 Sovová, 2005, Mathematical model for supercritical fluid extraction of natural products and extraction curve evaluation, J. Supercrit. Fluids, 33, 35, 10.1016/j.supflu.2004.03.005 Oliveira, 2011, Review of kinetic models for supercritical fluid extraction, Chem. Eng. Res. Des., 89, 1104, 10.1016/j.cherd.2010.10.025 Catchpole, 1996, Near-critical extraction of sage, celery, and coriander seed, J. Supercrit. Fluids, 9, 273, 10.1016/S0896-8446(96)90058-3 Reverchon, 2011, Modeling and simulation of the supercritical CO2 extraction of vegetable oils, J. Supercrit. Fluids, 19, 161, 10.1016/S0896-8446(00)00093-0 Grosso, 2010, Mathematical modelling of supercritical CO2 extraction of volatile oils from aromatic plants, Chem. Eng. Sci., 65, 3579, 10.1016/j.ces.2010.02.046 Fornari, 2012, Isolation of essential oil from different plants and herbs by supercritical fluid extraction, J. Chromatogr. A, 1250, 34, 10.1016/j.chroma.2012.04.051 Pourmortazavi, 2007, Supercritical fluid extraction in plant essential and volatile oil analysis, J. Chromatogr. A, 1163, 2, 10.1016/j.chroma.2007.06.021 Nađalin, 2014, Investigation of cultivated lavender (Lavandula officinalis L.) extraction and its extracts, Chem. Ind. Chem. Eng. Q., 20, 71, 10.2298/CICEQ120715103N Pereira, 2010, Supercritical fluid extraction of bioactive compounds: fundamentals, applications and economic perspectives, Food Bioprocess Technol., 3, 340, 10.1007/s11947-009-0263-2