Supercritical CO2: Properties and Technological Applications - A Review

Polikhronidi Nikolai1, Batyrova Rabiyat1, A.M. Aliev1, Abdulagatov Ilmutdin2
1Thermodynamics of Fluids and Critical Phenomena, Institute of Physics of the Dagestan Scientific Center of the Russian Academy of Sciences, Makhachkala Dagestan, Russian Federation
2Thermophysics Division, Geothermal Research Institute of the Russian Academy of Sciences, Makhachkala Dagestan, 367003, Russian Federation

Tóm tắt

Từ khóa


Tài liệu tham khảo

Pruess K., Azaroual M., On the feasibility of using supercritical CO2 as heat transmission fluid in an engineered hot dry rock geothermal system. In: Proceedings 31th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, 2006.

Brown D.W., A hot dry rock geothermal energy concept utilizing supercritical CO2 instead of water. In: Proceedings Twenty–Fifth Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, 2000.

Huang C.J., Hsieh J.C., Lin D.T., The experimental study of heat extraction of supercritical CO2 in the geothermal reservoir. MATEC Web of Conferences. EDP Sciences, 2016, 60: 04010.

He Y., Bai B., Li X., Numerical study on the heat transfer characteristics of supercritical water in a rock fracture for enhanced geothermal systems. International Journal of Thermophysics, 2018, in press.

Supercritical CO2 Power Cycle Symposium, The Power Industry’s Next Phase Shift, May 24–25, 2011, U.S. Department of Energy, Boulder, CO USA.

Pan L., Freifeld B., Doughty C., et al., Fully coupled wellbore–reservoir modeling of geothermal heat extraction using CO2 as the working fluid. Geothermics, 2015, 53: 100–113.

Atrens A.D., Gurgenci H., Rudolph V., Electricity generation using a carbon–dioxide thermosiphon. Geothermics, 2010, 39(2): 161–169.

Xu T., Feng G., Shi Y., On fluid–rock chemical interaction in CO2–based geothermal systems. Journal of Geochemical Exploration, 2014, 144: 179–193.

Hsieh J.C., The heat extraction investigation of supercritical carbon dioxide flow in heated porous media. Energy Procedia, 2014, 61: 262–265.

Liu L., Suto Y., Bignall G., CO2 injection to granite and sandstone in experimental rock/hot water systems. Energy Conversion and Management, 2003, 44(9): 1399–1410.

Buscheck T.A., Bielicki J.M., Chen M., Integrating CO2 storage with geothermal resources for dispatchable renewable electricity. Energy Procedia, 2014, 63: 7619–7630.

Randolph J.B., Saar M.O., Bielicki J., Geothermal energy production at geologic CO2 sequestration sites: Impact of thermal drawdown on reservoir pressure. Energy Procedia, 2013, 37: 6625–6635.

Jiang P.X., et al., Convection heat transfer of supercritical pressure carbon dioxide in a vertical micro tube from transition to turbulent flow regime. International Journal of Heat and Mass Transfer, 2013, 56(1): 741–749.

Liu G., et al., Effect of buoyancy and flow acceleration on heat transfer of supercritical CO2 in natural circulation loop. International Journal of Heat and Mass Transfer, 2015, 91: 640–646.

Herzog H.J., Peer reviewed: what future for carbon capture and sequestration? Environmental Science & Technology, 2001, 35: 148A–153A.

Benson S.M., Cole D.R., CO2 sequestration in deep sedimentary formations. Elements, 2008, 4(5): 325–331.

Harvey O.R., et al., Geochemical implications of gas leakage associated with geologic CO2 storage–A qualitative review. Environmental Science & Technology, 2012, 47(1): 23–36.

Bachu S., Adams J.J., Sequestration of CO2 in geological media in response to climate change: capacity of deep saline aquifers to sequester CO2 in solution. Energy Conversion and Management, 2003, 44(20): 3151–3175.

White C.M., et al., Sequestration of carbon dioxide in coal with enhanced coalbed methane recovery a review. Energy & Fuels, 2005, 19(3): 659–724.

Streit J.E., Hillis R.R., Estimating fault stability and sustainable fluid pressures for underground storage of CO2 in porous rock. Energy, 2004, 29 (9–10): 1445–1456.

Hendriks C.A., Blok K., Underground storage of carbon dioxide. Energy Conversion and Management, 1993, 34 (9–11): 949–957.

Bachu S., Sequestration of CO2 in geological media: criteria and approach for site selection in response to climate change. Energy Conversion and Management, 2000, 41: 953–970.

Kaupp G., Reactions in supercritical carbon dioxide. Angewandte Chemie International Edition in English, 1994, 33: 1452–1455.

Savage P.E., et al., Reactions at supercritical conditions: applications and fundamentals. American Institute of Chemical Engineering Journal, 1995, 41: 1723–1778.

Clifford T., Bartle K., Chemical reactions in supercritical fluids. Chemical Industry, 1996, 17: 449–469.

Abbasov Z.Y., Fataliev V.F., About the physical nature of the retrograde condensation pressure of gas–condansate systems in the porous media condition. In: Proc. Azerbaidjan Academy of Sciences, Section Sciences of Earth, 2015, 3: 60–66.

Katz D.L., Kurata F., Retrograde condensation. Industrial & Engineering Chemistry, 1940, 32: 817–827.

Raghavan R., Jones J.R., Depletion performance of gascondensate reservoirs. Journal of Petroleum Technology, 1996, 48(08): 725–31.

Anton K., From potential to practice: relevant industrial applications of packed–column supercritical fluid chromatography. Journal of Chromatographic Science, 1994, 32(10): 430–438.

Schneider G.M., Applications of fluid mixtures and supercritical solvents: A survey. Supercritical Fluids.–Springer, Dordrecht, 1994, pp.: 739–757.

McHugh M., Krukonis V., Supercritical fluid extraction. Butterworths, London, 1986, pp.: 507.

Schneider G.M., Stahl E., Wilke G. (ed.). Extraction with supercritical gases. Weinheim, Verlag Chemie, 1980, pp.:189.

Schneider G.M., Survey on applications of fluid mixtures and supercritical solvents presented at this meeting. In: Proceeding of the International Symposium on Supercritical Fluids. M. Perrut, (ed.), Nice, France, 1988, pp.: 1–17.

Salto S., Research activities on supercritical fluid science and technology in Japan–a review. The Journal of Supercritical Fluids, 1995, 8(3): 177–204.

Lauer H.H., McManigill D., Board R.D., Mobile–phase transport properties of liquefied gases in near critical and supercritical fluid chromatography. Analytical Chemistry, 1983, 55(8): 1370–1375.

Wasen U., Swaid I., Schneider G.M., Physicochemical principles and applications of supercritical fluid chromatography (SFC). New analytical methods (19), Angewandte Chemie International Edition in English, 1980, 19(8): 575–587.

Wilson I.D., Davis P., Ruane R.J., Supercritical fluid chromatography and extraction of pharmaceuticals. In: Application of Supercritical Fluids in Industrial Analysis. J.RDean, (ed.), CRC Press Inc., Boca Raton, FL, 1993, pp.74–104.

Schneider, G.M., High–pressure investigations of fluid mixtures–review and recent results. Journal of Supercritical Fluids, 1998, 13: 5–14.

Kiran E., Levelt Sengers J.M.H., (eds.), Supercritical fluids fundamentals for application, NATO, ASI Ser. 1993, Vol. 273.

Kiran E., Brennecke J.F., (eds.), Supercritical fluid engineering science, ACS, Symp. Ser. 514, Washington, D.C., 1993.

Manssori G.A., Savidge J.L., Predicting retrograde phenomena and miscibility using equation of state. SPE 19809, SPE, Inc., 1989, pp.: 383–398.

Orr F.M. Jr., Taber J.J., Displacement of oil by carbon dioxide. Annual Report to the USA DOE Report No. DOE/BC/10331–4, 1981.

Larson L.L., Temperature dependence of L1/L2/V behavior in CO2/hydrocarbon systems. SPE Reservoir Engineering, 1989, 4: 105–114.

Voulgaris M.E., Peters C.J., de Swaan Arons J., On the retrograde condensation behavior of lean natural gas. International Journal of Thermophysics, 1995, 16(3): 629–642.

Standing M.B., Volumetric and phase behavior of oil field hydrocarbon systems. Millet the Printer, Inc., Dallas, TX, 1977.

Orr Jr F.M., et al., Equilibrium phase compositions of CO2/crude oil mixtures–part 2: comparison of continuous multiple–contact and slim–tube displacement tests. Society of Petroleum Engineers Journal, 1983, 23(02): 281–291.

Doscher, T.M., El–Arabi M., Scaled model experiments show how CO2 might economically recover residual oil. Oil Gas Journal, 1982, 80: 144–151.

Holm L.R.W., et al., Effect of oil composition on miscible–type displacement by carbon dioxide. Society of Petroleum Engineers Journal, 1982, 22(01): 87–98.

Stalkup F.I., Status of miscible displacement. Journal of Petroleum Technology, 1983, 1: 815–827.

Dadashev M.N., Abdulagatov A.I., Experimental study of the process of extraction with carbon dioxide in the supercritical conditions. Russian Journal of Chemistry and Chemical Production, 1997, 3(4): 64–79.

Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., at al., Isochoric heat capacity measurements for a CO2+n–decane mixture in the near–critical and supercritical regions. Journal of Supercritical Fluids, 2004, 33: 209–222.

Polikhronidi N.G., Batyrova R.G., Abdulagatov I.M., et al., Isochoric Heat Capacity of CO2 + n–Decane Mixtures in the Critical Region. International Journal of Thermophysics, 2006, 27: 729–759.

Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G., PVTx and thermal–pressure coefficient measurements of the binary CO2+ n–decane mixtures in the critical and retrograde regions. The Journal of Chemical Thermodynamics, 2018, 125: 107–135.

Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G., Measurements of the heat capacities CV of carbon dioxide in the critical region. The Journal of Chemical Thermodynamics, 1994, 26: 1031–1045.

Abdulagatov I.M., Polikhronidi N.G., Batyrova R.G., Isochoric heat capacity and liquid–gas coexistence curve of carbon dioxide in the region of the immediate vicinity of the critical point. Berichte der Bunsengesellschaft für physikalische Chemie, 1994, 98: 1068–1072.

Dixon D.J., Johnston K.P., Supercritical fluids, Encyclopedia of Chemical Technology, 4th ed., 1997, 23: 452.

Wang S., Kienzle F., The syntheses of pharmaceutical intermediates in supercritical fluids. Industrial & Engineering Chemistry Research, 2000, 39(12): 4487–4490.

Brennecke, J.F., New applications of supercritical fluids. Chemistry and Industry, 1996, 21: 831–834.

Lenhard U., Luerken F., Boeckler T., Donnerhacu A., CO2–extractions. Process Design and Economics, Food Marketing & Technology, 1990, 5: 56.

Tom J.W., Lim G.B., Debenedetti P.G., Prud’homme R.K., Applications of supercritical fluids in the controlled release of drugs. American Chemical Society Symposium Series, 1993, 514: 238–257.

Yeo S.D., Formation of microparticulate protein powder using a supercritical fluid antisolvent. Biotechnology and Bioengineering, 1993, 41(3): 341–346.

Winters M.A., et al., Precipitation of proteins in supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 1996, 85(6): 586–594.

Kutson B.L., Debenedetti P.G., Tom J.W., Microparticulate systems for the delivery of proteins and vaccines. Cohen S., Brenstein H., (eds.), Marcel Dekker Inc., New York, 1998.

Roston D.A., Sun J.J., Supercritical fluid extraction method development for extraction of an experimental HIV protease inhibitor drug from animal feed. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15(4): 461–468.

Subramaniam B., Rajewski R.A., Snavely K., Pharmaceutical processing with supercritical carbon dioxide. Journal of Pharmaceutical Sciences, 1997, 86: 885–890.

Groves Jr F.R., State of the art on the supercritical extraction of organics from hazardous wastes. Critical Reviews in Environmental Science and Technology, 1985, 15: 237–274.

Akgerman A., Roop R.K., Hess R.K., Yeo S.D., Environmental application of supercritical extraction. In: Supercritical Fluid Technology: Reviews in Modern Theory and Applications. T.J. Bruno, J.F. Ely, (eds.), CRC Press, Boca Raton, FL, 1991, Chapter 14.

De Fillipi R.P., Krukonis V.J., Model M., Supercritical fluid regeneration of activated carbon for absorption of pesticides. Environmental Protection Agency Report, No. EPA–60012–80–054, 1980.

Eppig C.P., De Fillipi R.P., Murphy R.A. Supercritical fluid regeneration o f activated carbon as having a 13C CP–MAS aromaticity value of about 0.22. U.S. EPA Report 600/2–82–067, EPA Office of Research and Development, Research Triangler Park, NC, 1981.

Ringhasnd P.H., Kopfler F.C. Isolation and concentration of organic substances from water an evaluation of supercritical fluid extraction. 186th National Meeting of the ACS, Washington, DC, August 28 to September 3, 1983.

Laitinen A., Michaux A., Aaltonen O., Soil cleaning by carbon dioxide extraction: a review. Environmental Technology, 1994, 15: 715–727.

Hess R.K., Erkey C., Akgerman A., Supercritical extraction of phenol from soil. The Journal of Supercritical Fluids, 1991, 4: 47–52.

Hawthorne S.B., Miller D.J., Extraction and recovery of polycyclic aromatic hydrocarbons from environmental solids using supercritical fluids. Analytical Chemistry, 1987, 59(13): 1705–1708.

Janda V., Bartle K., Clifford A.A., Supercritical fluid extraction in environmental analysis. In: Application of Supercritical Fluids in Industrial Analysis, J.R. Dean, (ed.), CRC Press Inc., Boca Raton, FL, 1993: 159–188.

Orr F.M., Sliva M.K., Lien C.L., Equilibrium phase compositions of CO/sub 2//hydrocarbon mixtures–part 1: Measurement by a continuous multiple–contact experiment. Society of Petroleum Engineers Journal, 1982, 22: 272–280.

Holm L.W., Josendal V.A., Effect of oil composition on miscible–type displacement by carbon dioxide. Society of Petroleum Engineers Journal, 1982, 22: 87–98.

Dadashev M.N., Abdulagatov A.I., Experimental study of the process of extraction with carbon dioxide in the supercritical conditions. Russian Journal of Chemistry and Chemical Production, 1997, 3: 64–69.

Dadashev M.N., Abdulagatov A.I., Supercritical extraction of vegetable products. Russian Journal of Chemical Production, 1997, 5: 35–40.

Caragay A.B., Little A.D., Supercritical fluids for extraction of flavors and fragrances from natural products. Parfumer & Flavorist, 1981, 6: 43–54.

Papamichail I., Louli V., Magoulas, K., Supercritical fluid extraction of celery seed oil. Journal of Supercritical Fluids, 2000, 18: 213–226.

Berna A., Tarrega A., Blasco M., Subirats S., Supercritical CO2 extraction of essential oil from orange peel; effect of the height of the bed. Journal of Supercritical Fluids, 2000, 18: 227–237.

Subramanyam C.V., Use of supercritical fluids in vegetable oil industries. Chemical Engineering World, 1989, 24: 35–39.

Moyler D.A., Extraction of flavours and fragrances with compressed CO2. In: Extraction of Natural Products Using Near–Critical Solvents. M.B. King, T.R. Bott, (eds.), Glasgow: Chapman & Hall, 1993, pp.: 140–183.

Ting S.S.T., Macnaughton S.J., Tomasko D.L., Foster N.R., Solubility of naproxen in supercritical carbon dioxide with and without cosolvents. Industrial & Engineering Chemical Research, 1993, 32: 1471–1481.

Gurdial G.S., Macnaughton S.J., Tomasko D.L., Foster N.R., Influence of chemical modifiers on the solubility of o–and m–hydroxybenzoic acid in supercritical carbon dioxide. Industrial & Engineering Chemical Research, 1993, 32: 1488–1497.

Dobbs J.M., Wong J.M., Lahiere R.J., Johnston K.P., Modification of supercritical fluid phase behavior using polar cosolvents. Industrial & Engineering Chemical Research, 1987, 26: 56–65.

Ekart M.P., Bennett K.L., Ekart S.M., et al., Cosolvent interactions in supercritical fluid solutions. American Institute of Chemical Engineering Journal, 1993, 39: 235–248.

Dooley K.M., Kao Ch.P., Gambrell R.P., Knopf, F.C., The use of entrainers in the supercritical extraction of soils contaminated with hazardous organics. Industrial & Engineering Chemical Research, 1987, 26: 2058–2062.

Schmitt W.J., Reid R.C., The use of entrainers in modifying the solubility of phenanthrene and benzonic acid in supercritical carbon dioxide and ethane. Fluid Phase Equilibria, 1986, 32: 77–99.

Dobbs J.M., Wong J.M., Johnston J.P., Nonpolar cosolvents for solubility enhancement in supercritical fluid carbon dioxide. Journal of Chemical and Engineering Data, 1986, 31: 303–308.

Dobbs J.M., Johnston J.P., Selectivities in pure and mixed supercritical fluid solvents. Industrial & Engineering Chemical Research, 1987, 26: 1476–1482.

Gurdial G.S., Foster N.R., Yun S.L.J., Tilly K.D.T., Phase behavior of supercritical fluid–entrainer systems, In: Symposium on Supercritical Fluids. Annual AIChE Meeting, Los Angeles, 17–22 November, 1991, pp.: 34–45.

Levelt Sengers J.M.H., Morrison G., Nielson G., Thermodynamic behavior of supercritical fluid mixtures. International Journal of Thermophysics, 1986, 7: 231–243.

Chang R.F., Morrison G., Levelt Sengers J.M.H., The critical dilemma of dilute mixtures. The Journal of Physical Chemistry, 1984, 88: 3389–3391.

Levelt Sengers J.M.H., Solubility near the solvent’s critical point. Journal of Supercritical Fluids, 1991, 4: 215–222.

Harvey A. H., Levelt Sengers J.M.H., Unified description of infinite–dilution thermodynamic properties of aqueous solutions. The Journal of Physical Chemistry, 1991, 95: 932–937.

Levelt Sengers J.M.H., Thermodynamics of solutions near the solvent’s critical point. In: Supercritical Fluid Technology, J.F. Ely, T.J. Bruno,( eds.), CRC Press, Boca Raton, FL, 1991, pp.: 1–50.

Chang R.F., Levelt Sengers J.M.H., Behavior of dilute mixtures near the solvent’s critical point. The Journal of Physical Chemistry, 1986, 90: 5921–2927.

Kiselev S.B., Sengers J.V., An improved parametric crossover model for the thermodynamic properties of fluids in the critical region. International Journal of Thermophysics, 1993, 14: 1–32.

Kiselev S.B., Abdulagatov I.M., Harvey A.H., Equation of state and thermodynamic properties of pure D2O and D2O+H2O mixtures in and beyond the critical region. International Journal of Thermophysics, 1999, 20: 563–588.

Kiselev S.B., Ely J., Abdulagatov I.M., Bazaev A.R., Magee J.W., Equation of state and thermodynamic properties of pure toluene and dilute aqueous toluene solutions in the critical and supercritical regions. Industrial & Engineering Chemical Research, 2002, 41: 1000–1016.

Kiselev S.B., Rainwater J.C., Enthalpies, excess volumes, and specific heats of critical and supercritical binary mixtures. The Journal of Chemical Physics, 1998, 109: 643–657.

Kiselev S.B., Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region. Fluid Phase Equilibria, 1997, 128: 1–28.

Kiselev S.B., Ely J.F., Generalized corresponding states model for bulk and interfacial properties in pure fluids and fluid mixtures. The Journal of Chemical Physics, 2003, 119: 8645–8662.

Kiselev S.B., Cubic crossover equation of state. Fluid Phase Equilibrium, 1998, 147: 7–23.

Kiselev S.B., Ely J.F., Simplified crossover SAFT equation of state for pure fluids and fluid mixtures. Fluid Phase Equilibrium, 2000, 174(1–2): 93–113.

Abdulagatov I.M., Bazaev A.R., Magee J.W., et al., PVTx Measurements and crossover equation of state of pure n–hexane and dilute aqueous n–hexane solutions in the critical and supercritical regions. Industrial & Engineering Chemical Research, 2005, 44: 1967–1984.

Anisimov M.A., Kiselev S.B., Sengers J.V., Tang S., Crossover approach to global critical phenomena in fluids. Physica, 1992, A 188: 487–525.

Belyakov M.Yu., Kiselev S.B., Rainwater J.C., Crossover Leung–Griffiths model and the phase behavior of binary mixtures with and without chemical reaction. Fluid Phase Equilibria, 1998, 151–152: 439–449.

Belyakov M.Yu., Kiselev S.B., Rainwater J.C., Crossover Leung–Griffiths model and the phase behavior of dilute aqueous ionic solutions. The Journal of Chemical Physics, 1997, 107: 3085–3097.

Povodyrov A.A., Jin G.X., Kiselev S.B., Sengers J.V., Crossover equation of state for the thermodynamic properties of mixtures of methane and ethane in the critical region. International Journal of Thermophysics, 1996, 17: 909–944.

Teja A.S., Smith R.L., The correlation and prediction of critical states of mixtures using a corresponding states principle. In: Chemical Engineering at Supercritical Conditions, M.E. Paulitis, R.D. Gray, T. Penninger, P. Davidson, (eds.), Ann Arbor Science. 1983, Chapter 15: 341–357.

Jones I.W., Rowlinson J.S., Gas–liquid critical temperatures of binary mixtures. Transactions of the Faraday Society, 1963, 59: 1702–1708.

van Konynenburg P.H., Scott R.L., Critical lines and phase equilibria in binary van der Waals mixtures. Philosophical Transactions of the Royal Society, 1980, 298: 495–540.

Privman V., Hohenberg P.C., Aharony A., Phase transitions and critical phenomena. Domb C., Lebowitz L., (ed.), AP, NY, 1999, 14: 1–367.

Pelissetto A., Vicari E., Critical phenomena and renormalization–group theory. Physics Reports, 2002, 368(6): 549–727.

Fisher M.E., Zinn Sh.–Y., The shape of the van der Waals loop and universal critical amplitude ratios. Journal of Physics A, 1998, 319: L629–L635.

Nicoll J.F., Albright P.C., Crossover functions by renormalization–group matching: three–loop results. Physical Review B, 1985, 31(7): 4576–4589.

Bervillier C., Estimate of a universal critical–amplitude ratio from its ɛ expansion up to ɛ 2. Physical Review B, 1986, 34(11): 8141–8143.

Behnejad H., Sengers J.V., Anisimov M.A., Thermodynamic behavior of fluids near the critical points. In: Applied Thermodynamics Fluids, A.R.H. Goodwin, J.V. Sengers, C.J. Peters, (eds.), IUPAC, 2010, Chapter 10, pp.: 321–367.

Perkins R.A., Sengers J.V., Abdulagatov I.M., Huber M.L., Simplified model for the critical thermalconductivity enhancement in molecular fluids. International Journal of Thermophysics, 2013, 34: 191–212.

Sengers J.V., Effect of critical fluctuations on the thermodynamic and transport properties of supercritical fluids. In: Supercriticaal Fluids, Kiran E. and Levelt Sengers J.M.H. (eds.), Kulwer Acad. Publ., The Nitherlands, 1994, pp.: 231–271.

Span, R., Wagner, W., Equations of state for technical applications. III. Results for polar fluids. International Journal of Thermophysics, 2003, 24(1): 111–162.

Lemmon E.W., Huber M.L., McLinden M.O., NIST Standard Reference Database 23, NIST Reference Fluid Thermodynamic and Transport Properties, REFPROP, version 10.1, Standard Reference Data Program, National Institute of Standards and Technology, Gaithersburg, MD. 2018.

Frenkel M., Chirico R., Diky V., Muzny C.D., Kazakov A.F., Magee J.W., Abdulagatov I.M., Jeong Won Kang: NIST Thermo Data Engine, NIST Standard Reference Database 103b–Pure Compound, Binary Mixtures, and Chemical Reactions, Version 5.0, National Institute Standards and Technology, Boulder, Colorado–Gaithersburg, MD, 2010.

Dordain L., Coxam J.Y., Quint J.R., et al., Isobaric heat capacities of carbon dioxide and argon between 323 and 423 K and at pressures up to 25 MPa. Journal of Supercritical Fluids, 1995, 8: 228–235.

Rivkin S.L., Gukov V.M., Isobaric heat capacity of carbon dioxide containing impurities at supercritical pressures. Teploenergetika, 1971, 18: 82–83.

Koppel L. B., Smith J. M., Thermal properties of carbon dioxide in the critical region. Journal of Chemical Engineering Data, 1960, 5: 437–440.

Boulton J. R., Stein F. P., The constant pressure heat capacity of supercritical carbon dioxide–methanol and carbon dioxide–ethanol cosolvent mixtures. Fluid Phase Equilibria, 1993, 91: 159–176.

Amirkhanov Kh.I., Polikhronidi, N.G., Alibekov B.G., Batyrova R.G., Isochoric heat capacity c(v) of carbon dioxide. Teploenergetika, 1971, 18: 59–62.

Amirkhanov Kh.I., Polikhronidi N.G., Batyrova R.G., Experimental determination of the specific heat of liquid carbon dioxide. Teploenergetika, 1970, 17: 70–72.

Magee J.W., Ely J.F., Specific heats (C v) of saturated and compressed liquid and vapor carbon dioxide. International Journal of Thermophysics, 1986, 7(6): 1163–1182.

Haase R., Tillmann W., Heat capacities of onecomponent and two–component fluid systems in the critical region. Zeitschrift für Physikalische Chemie, 1994, 187(2): 317–317.

Beck L., Ernst G., Gurtner J., Isochoric heat capacity Cv of carbon dioxide and sulfur hexafluoride in the critical region. Journal of Chemical Thermodynamics, 2002, 34: 277–292.

Ernst G., Gurtner J., Beck L.A., Cv calorimeter of small dimension. Journal of Chemical Thermodynamics, 1997, 29: 1189–1203.

Zhang X., Zhang X., Han B., at al., Determination of constant volume heat capacity of mixed supercritical fluids and study on the intermolecular interaction. Journal of Supercritical Fluids, 2002, 24: 193–201.

Estrada–Alexanders A. F., Trusler J. P.M. Speed of sound in carbon dioxide at temperatures between (220 and 450) K and pressures up to 14MPa. The Journal of Chemical Thermodynamics, 1998, 30: 1589–1601.

Liu Q., Feng X., An B., Duan Y., Speed of sound measurements using a cylindrical resonator for gaseous carbon dioxide and propene. Journal of Chemical Engineering Data, 2014, 59: 2788–2798.

Kestin J., Khalifa H.E., Wakeham W.A., Viscosity of multicomponent mixtures of four complex gases. The Journal of Chemical Physics, 1976, 65: 5186–5188.

Timrot D.L., Traktueva S.A., Dependence of the viscosity of CO2 and SF6 on temperature at moderate densities. High Temperature (Engl. Transl.), 1975, 22: 105–108.

Estrada–Alexanders A.F., Hurly J.J., Kinematic viscosity and speed of sound in gaseous CO, CO2, SiF4, SF6, C4F8, and NH3 from 220 K to 375 K and pressures up to 3.4 MPa. The Journal of Chemical Thermodynamics, 2008, 40: 193–202.

Hunter I.N., Marsh G., Matthews G.P., Smith E.B., Argon + carbon dioxide gaseous mixture viscosities and anisotropic pair potential energy functions. International Journal of Thermophysics, 1993, 14: 819–833.

Michels A., Sengers J.V., Van der Gulik P.S., The thermal conductivity of carbon dioxide in the critical region. Physica, 1962, 28: 1216–1237.

Le Neindre B., Bury P., Tufeu R., Recent developments at bellevue on thermal conductivity measurements of compressed gases thermal conductivity. Proceeding of the Seventh Thermophysicaal Conference 1968, Gaithersburg Maryland, November 13, pp.: 579–593.

LeNeindre B., Contribution to the experimental study of the thermal conductivity of some high temperature and high pressure fluids. International Journal of Heat and Mass Transfer, 1972, 15: 1–24.

LeNeindre B., Tufeu R., Bury P., Sengers J.V., Thermal conductivity of carbon dioxide and steam in supercritical region. Berichte der Bunsengesellschaft für Physikalische Chemie, 1973, 77: 262–275.

LeNeindre B., Bury P., Tufeu R., Johannin P., Vodar B., The thermal conductivity of carbon dioxide at high temperatures and high pressures. Shanks, H. R. (ed.), U. S. Atomic Energy Commission, 9th Conference on Thermal Conductivity, 1969.

Span R., Wagner W., A New Equation of State for Carbon Dioxide Covering the Fluid Region from the Triple–Point Temperature to 1100 K at Pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25(6):1509–1596.

Huber M.L., et al. Reference correlation of the thermal conductivity of carbon dioxide from the triple point to 1100 K and up to 200 MPa. Journal of Physical and Chemical Reference Data, 2016, 5(1): 013102.

Laesecke A., Muzny C.D., Reference correlation for the viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data, 2017, 46: 013107.

Quinones–Cisneros S.E., Deiters U.K., Generalization of the friction theory for viscosity modeling. Journal of Physics and Chemistry B, 2006, 110(25): 12820–12834.

Fenghour A., Wakeham W.A., Vesovic V., The viscosity of carbon dioxide. Journal of Physical and Chemical Reference Data, 1998, 27: 31–44.

Kiselev S.B., Friend D.G., Revision of a multiparameter equation of state to improve the representation in the critical region: application to water. Fluid Phase Equilibria, 1999, 155: 33–55.

Kiselev S.B., Sengers J.V. An improved parametric crossover model for the thermodynamic properties of fluids in the critical region. International Journal of Thermophysics, 1993, 14: 1–32.

Kiselev S.B., Huber M.L., Transport properties of carbon dioxide–ethane and methane+ethane mixtures in the extended critical region. Fluid Phase Equilibria, 1998, 142: 253–280.

Kiselev S. B. Prediction of the thermodynamic properties and the phase behavior of binary mixtures in the extended critical region. Fluid Phase Equilibria, 1997, 128(1–2): 1–28.

Kiselev S.B., Rainwater J.C., Huber M.L., Binary mixtures in and beyond the critical region: Thermodynamic properties. Fluid Phase Equilibria, 1998, 150: 469–478.

Adamov Sh.P., Anisimov M.A., Smirnov V.A., Experimental study of the isochoric heat capacity of binary mixture of argon+carbon dioxide. In: Thermophysical Properties of Substances and Materials. GSSSD, Moscow, 1983, 18: 13–19.

Adamov Sh.P., Anisimov M.A., Smirnov V.A., Experimental study of the isochoric heat capacity of carbon dioxide over the wide range of the critical point. In: Thermophysical Properties of Substances and Materials. GSSSD, Moscow, 1983, 18: 7–13.

Herget C.M., Ultrasonic velocity in carbon dioxide and ethylene in the critical region. The Journal of Chemical Physics, 1940, 8(7): 537–542.

Estrada–Alexanders A.F., Trusler J.P.M., Speed of sound in carbon dioxide at temperatures between (220 and 450) K and pressures up to 14MPa. The Journal of Chemical Thermodynamics, 1998, 30: 1589–1601.

Fisher M.E., The renormalization group in the theory of critical behavior. Reviews of Modern Physics, 1974, 46: 597–616.

Wilson K.G., The renormalization group: Critical phenomena and the Kondo problem. Reviews of Modern Physics, 1975, 47: 773–840.

Fisher M.E., Critical phenomena, lectures notes in Physics. F.J.W. Hahne, (ed.), Springer, Berlin. 1988, 186: 1–139.

Chen Z.Y., Albright P.C., Sengers J.V., Crossover from singular critical to regular classical thermodynamic behavior of fluids. Physical Review A, 1990, 41: 3161–3177.

Chen Z.Y., Abbaci A., Tang S., Sengers J.V., Global thermodynamic behavior of fluids in the critical region. Physical Review A, 1990, 42: 4470–4484.

KIselev S.B., Ely J.F., Generalized crossover description of the thermodynamic and transport properties in pure fluids. Fluid Phase Equilibria, 2004, 222: 149–159.

Kawasaki K., Kinetic equations and time correlation functions of critical fluctuations. Annals of Physics, 1970, 61(1): 1–56.

Ferrell R.A., Decoupled–mode dynamical scaling theory of the binary–liquid phase transition. Physical Review Letters, 1970, 24: 1169–1172.

Olchowy G.A., Sengers J.V., A simplified representation for the thermal conductivity of fluids in the critical region. International Journal of Thermophysics, 1989, 10: 417–426.

Sengers J.V., Sengers J.M.H.L., Thermodynamic behavior of fluids near the critical point. Annual Review of Physical Chemistry, 1986, 37: 189–222.

J. Rowlinson, F.L. Swinton, Liquids and liquid mixtures. 3rd ed., Butterworths, London, 1982.

Gerasimov A.A., New generalized crossover equation of state in the wide range of the critical point. Bulleten of the Kaliningrad State University, 2003, 3: 30–37.

Chialvo A.A., Cummings P.T. Solute induced effects on the structure and thermodynamics of infinitely dilute mixtures. American Institute of Chemical Engineering Journal, 1994, 40: 1558–1573.

Cummings P.T., Chialvo A.A., Cochran H.D., Molecular simulation study of solvation structure in supercritical aqueous solutions. Chemical Engineering Science, 1994, 49: 2735–2748.

Chialvo A.A., Cummings P.T., Comment on ‘Near critical phase behaviour of dilute mixtures’. Molecular Physics, 1995, 84: 41–48.

Chialvo A.A., Fluctuation theory of mixtures. E. Matteoli, G.A. Manssori, (eds.), Taylor and Francis, New York, 1990, pp.: 131–209.

Chialvo A.A., Determination of excess Gibbs free energy by the single–charging–integral approach. Infinite dilution activity coefficients and related quantities. The Journal of Physical Chemistry, 1991, 95: 6683–6687.

Chialvo A.A., Cummings P.T., Encyclopedia of Computational Chemistry. Wiley, New York, 1998, pp. 2839–2859.

O'Connell J.P., Sharygin A.V., Wood R.H., Infinite dilution partial molar volumes of aqueous solutes over wide ranges of conditions. Industrial & Engineering Chemistry Research, 1996, 35: 2808–2812.

Eckert C.A., Ziger D.H., Johnston K.P., Ellison T.K., The use of partial molal volume data to evaluate equations of state for supercritical fluid mixtures. Fluid Phase Equilibria, 1983, 14: 167–175.

Chimowitz E.H., Afrane G., Classical, non–classical critical divergences and partial molar properties from adsorption measurements in near–critical mixtures. Fluid Phase Equilibria, 1996, 120: 167–193.

Wheeler J.C., Behavior of a solute near critical point of an almost pure solvent. Berichte der Bunsengesellschaft für Physikalische Chemie, 1972, 76: 308–318.

Khazanova N.E., Sominskaya E.E., Partial molar volumes in the ethane–carbon dioxide systems near the critical points of the pure components. Russian Journal of Physical Chemistry, 1971, 45: 1485–1491.

van Wasen U., Swaid I., Schneider G.M., Physicochemical principles and applications of supercritical fluid chromatography (SFC). Angewandte Chemie International Edition in English, 1980, 19: 575–587.

Fernández–Prini R., Japas M.L., Chemistry in near–critical fluid. Chemical Society Reviews, 1994, 23: 155–163.

Harvey A.H., Levelt Sengers J.M.H., Correlation of aqueous Henry’s constant from 0°C to the critical point. American Institute Chemical Engineering Journal, 1990, 36: 539–546.

Japas M.L., Levelt Sengers J.M.H., Gas solubility and Henry’s law near the solvent’s critical point. American Institute Chemical Engineering Journal, 1989, 35: 705–713.

Harvey A.H., Supercritical solubility of solids from nearcritical dilute–mixture theory. The Journal of Physical Chemistry, 1991, 94: 8403–8406.

Furuya T., Teja A.S., Krichevskii parameters and the solubility of heavy n–alkanes in supercritical carbon dioxide. Industrial and Engineering Chemistry Research, 2000, 39: 4828–4830.

Levelt Sengers J.M.H., Critical behavior of fluids: Concepts and applications. In: Supercritical Fluids: Fundamentals for Applications,E. Kiran, J.M.H. Levelt Sengers, (eds.), Kluwer, Dordrecht, 1994, pp.: 3–38.

Krichevskii I.R., Thermodynamics of critical phenomena in infinitely dilute binary solutions. Russian Journal of Physical Chemistry, 1967, 41: 1332–1338.

Gude M.T., Teja A.S., The critical properties of dilute n–alkane mixtures. Molecular Physics, 1994, 81: 599–607.

Bazaev A.R., Abdulagatov I.M., Bazaev E.A., Abdurashidova A., p–v–T–x measurements of {(1–x)H2O+x C2H5OH} mixtures in the near–critical and supercritical regions. The Journal of Chemical Thermodynamics, 2007, 39: 385–411.

Bazaev A.R., Abdulagatov I.M., Magee J.W., PVTx measurements for H2O+D2O mixtures in the near–critical and supercritical regions. Journal of Supercritical Fluids, 2003, 26: 115–128.

Orakova S.I., Rasulov S.M., Abdulagatov I.M., Experimental study of the PVTx relationship, L–L–V and L–V phase boundary of n–Hexane + Water mixtures near the upper and lower critical lines. Physics and Chemistry of Liquids, 2014, 52: 130–198.

Orakova S.I., Rasulov S.M., Abdulagatov I.M., Experimental study of the isomorphism behavior of weakly (CVX) and strongly (CPX, KTX) singular properties of 0.082n–Hexane+0.918Water mixtures near the upper critical point. Journal of Molecular Liquids, 2013, 187: 7–19.

Abdulagatov A.I., Stepanov G.V., Abdulagatov I.M., The critical properties of binary carbon dioxite containing mixtures. The Krichevskii parameter and related thermodynamic properties. Part II. Russian High Temperature, 2007, 45: 1–19.

Abdulagatov A.I., Stepanov G.V., Abdulagatov I.M., Krichevskii parameter and thermodynamic properties of infinite dilute aqueous mixtures near the critical point of pure water. Russian Supercritical Fluids. Theory and Practice, 2007, 2: 20–54.

Span R., Wagner W., A new equation of state for carbon dioxide covering the fluid region from the triple–point temperature to 1100 K at pressures up to 800 MPa. Journal of Physical and Chemical Reference Data, 1996, 25: 1509–1596.

Abdulagatov A.I., Stepanov G.V., Abdulagatov I.M., The critical properties of a binary aqueous and CO2 containing mixtures and the Krichevskii parameter. In: Supercritical Fluids. R. M. Belinsky, (ed.), Nova Science Publisher, Inc., New York, Chap. 2, 2010, pp.: 79–285.

Sedlbauer J., O'Connell J.P., Wood R.H., A new equation of state for correlation and prediction of standard molal thermodynamic properties of aqueous species at high temperatures and pressures. Chemical Geology, 2000, 163: 43–63.

Levelt Sengers J.M.H., Everhart C.M., Morrison G., Pitzer K.S., Thermodynamic anomalies in near–critical aqueous NaCl solutions. Chemical Engineering Communication, 1986, 47: 315–328.

Morrison G., Correlation of partial molar volumes at infinite dilution of salts in water. Journal of Solution Chemistry 1988, 17: 887–901.

Japas M.L., Fernandez–Pirini R., Horita J., Wesolowski D.J., Fractioning of isotopic species between coexisting liquid and vapor water: complete temperature range, including the asymptotic critical behavior. The Journal of Physical Chemistry, 1995, 99: 5171–5175.

Fernandez–Prini R., Alvarez J.L., Harvey A.H., Aqueous solubility of volatile nonelectrolytes. In: Aqueous Systems at Elevated Temperatures and Pressures, 2004: 73–98.

Plyasunov A.V., Shock E.L., Prediction of the vaporliquid distribution constants for volatile onrlrctrolytes in water up to its critical temperature. Geochimca et Cosmochimica Acta, 2003, 67: 4981–5009.

Alvarez J., Corti H.R., Fernandez–Prini R., Japas M.L., Distribution of solutes between coexisting steam and water. Geochimica et Cosmochimica Acta, 1994, 58: 2789–2798.

Japas M.L., Alvarez J.L., Gutkowski K., Fernández–Prini R., Determination of the Krichevskii function in nearcritical dilute solutions of I–2(s) and CHI3(s). The Journal of Chemical Thermodynamics, 1998, 30: 1603–1615.

Mendez–Santiago J., Teja A.S., The solubility of solids in supercritical fluids. Fluid Phase Equilibria, 1999, 160: 501–510.

Roth M., Krichevskii parameters of heavy n–alkanes in carbon dioxide: comparison of the results from solubility measurements and from supercritical fluid chromatography. Fluid Phase Equilibria, 2003, 212: 1–9.

Furuya T., Teja A.S., The solubility of high molecular weight n–alkanes in supercritical carbon dioxide at pressures up to 50 MPa. Journal of Supercritical Fluids, 2004, 29: 231–236.

McGuigan D.B., Monson P.A., Analysis of infinite dilution partial molar volumes using a distribution function theory. Fluid Phase Equilibria, 1990, 57: 227–247.

O'Connell J.P., Thermodynamic properties of solutions based on correlation functions. Molecular Physics, 1971, 20: 27–33.

Perry R.L., O'Connell J.P., Fluctuation thermodynamics properties of reactive components from species correlation function integrals. Molecular Physics, 1984, 52: 137–147.

Abdulagatov A.I., Stepanov G.V., Abdulagatov I.M., Alisultanova G., Ramazanova A.E., Extrema of isochoric heat capacity of water and carbon dioxide. ChemicalEngineering Communications, 2003, 190: 1499–1520.

Polikhronidi N.G., Abdulagatov I.M., Batyrova R.G., et. al., Experimental study of the isochoric heat capacity of diethyl ether (DEE) in the critical and supercritical regions. International Journal of Thermophysics, 2012, 33: 185–219.

Gaddy E.M., White J.A., Experimental and linear–model behavior of (∂2P/∂T2)V and (∂2μ/∂T2)ρ near the critical point of carbon dioxide. Physical Review A, 1982, 26: 2218–2226.

Stephenson J., Loci of maxima and minima of thermodynamic functions of a simple fluid. Canadian Journal of Physics, 1976, 54(12): 1282–1291

Magee J.W., Kaboyashi R. Behavior of isochoric inflection loci. In: Proc. 8th Symposium on Thermophysical Properties, Thermophysical Properties of Fluids, J.V. Sengers, (ed.), ASME, New York. 1982,1: 321–325.

Magee J.W., Thermophysical properties of natural refrigerants. In: The 20th Japan Symposium on Thermophysical Properties, Tokyo, 1999 October 20–22, p. 473–478.

Magee J.W., Isochoric p–ϱ–T measurements on Difluoromethane (R32) from 142 to 396 K and pentafluoroethane (R125) from 178 to 398 K at pressures to 35 MPa. International Journal of Thermophysics, 1996, 17: 803–822.

Theeuwes F., Bearman R.J., The p, V, T behavior of dense fluids IV. The p,V,T behavior of liquid xenon. The Journal of Chemical Thermodynamics, 1970, 2: 501–506.

Bearman R.J., Theeuwes F., Bearman M.Y., Mandel F., Throop G.J., Equation of state of dense fluids. VII. PY theory of CV extrema and comparison with experiment. The Journal of Chemical Physics 1970, 52: 5486.

Diller D.E., The specific heats (Cv) of dense simple fluids. Cryogenics, 1971, 11: 186–191.

Gladun C., The specific heat at constant volume of liquid neon. Cryogenics, 1971, 4: 78–80.

Guida R., Zinn–Justin S., Critical Exponents of the N–vector model. Journal of Physics A, 1998, 31: 8103–8121.

Saul D.M., Wortis M., Jasnow D., Confluent singularities and the correction–to–scaling exponent for the d=3 fcc Ising model. Physical Review B, 1975, 11: 2571–2578.

Fisher M.E., Orkoulas G., The Yang–Yang Anomaly in fluid criticality: experiment and scaling theory. Physical Review Letters, 2000, 85: 696–699.

Cerdeiriña C.A., Orkoulas G., Fisher M.E. Soluble model fluids with complete scaling and yang–yang features. Physical Review Letters, 2016, 116(4): 040601.

Orkoulas G., Fisher M.E., Ustun C., The Yang–Yang relation and the specific heats of propane and carbon dioxide. The Journal of Chemical Physics, 2000, 113: 7530–7545.

Orkoulas G., Fisher M. E., Panagiotopoulos A.Z., Precise simulation of criticality in asymmetric fluids. Physical Review E, 2001, 63(5): 051507.

Losada–Pérez P., Cerdeirina C.A., Coexisting densities and critical asymmetry between gas and liquid. The Journal of Chemical Thermodynamics, 2017, 109: 56–60.

Barmatz M., Hohenberg P.C., Kornblit A., Scaledequation–of–state analysis of the specific heat in fluids and magnets near critical point. Physical Review B, 1975, 12(5): 1947–1968.

Hohenberg P.C. et al., Two–scale–factor universality and the renormalization group. Physical Review B, 1976, 13(7): 2986–2996.

Stauffer D., Ferer M., Wortis M., Universality of secondorder phase transitions: The scale factor for the correlation length. Physical Review Letters, 1972, 29(6): 345–354.

Betts D.D., Guttmann A.J., Joyce G.S., Lattice–lattice scaling and the generalized law of corresponding states. Journal of Physics C: Solid State Physics, 1971, 4: 1994–2001.

Abdulagatov I.M., Magee J.W., Polikhronidi N.G., Batyrova R.G., Yang–Yang critical anomaly. In: Enthalpy and Internal Energy: Liquids, Solutions and Vapors, T. Letcher, E. Wilhelm, Editors, Royal Society of Chemistry, 2017, Chapter 15, pp.380–410.

Kiselev S.B., Kostyukova I.G., Povodyrev A.A., Universal crossover behavior of fluids and fluid mixtures in the critical region. International Journal of Thermophysics, 1991, 12(5): 877–895.

Bagnuls C., Bervillier C., Nonasymptotic critical behavior from field theory at d= 3: The disordered–phase case. Physical Review B, 1985, 32(11): 7209–7231.

Nieuwoudt J.C., et al., Transport properties of isobutane. Journal of Chemical and Engineering Data, 1987, 32: 1–8.

Kiselev S.B., Kulikov V.D., Thermodynamic and transport properties of fluids and fluid mixtures in the extended critical region. International Journal of Thermophysics, 1997, 18(5): 1143–1182.

Vesovic V., Wakeham W.A., Olchowy G.A., Sengers J.V., Watson J.T.R., Millat J., The transport properties of carbon dioxide. Journal of Physical and Chemical Reference Data, 1990, 19(3): 763–808.