Superconvergence of mixed finite element approximations to 3-D Maxwell’s equations in metamaterials
Tài liệu tham khảo
Baruch, 2009, Fourth order schemes for time-harmonic wave equations with discontinuous coefficients, Commun. Comput. Phys., 5, 442
Brandts, 1999, Superconvergence of mixed finite element semi-discretization of two time-dependent problems, Appl. Math., 44, 43, 10.1023/A:1022220219953
Chen, 1995
Chen, 2009, Symmetric energy-conserved splitting FDTD scheme for the Maxwell’s equations, Commun. Comput. Phys., 6, 804, 10.4208/cicp.2009.v6.p804
Chen, 2000, Finite element methods with matching and non-matching meshes for Maxwell’s equations with discontinuous coefficients, SIAM J. Numer. Anal., 37, 1542, 10.1137/S0036142998349977
Cockburn, 2004, Locally divergence-free discontinuous Galerkin methods for the Maxwell equations, J. Comput. Phys., 194, 588, 10.1016/j.jcp.2003.09.007
2009
Demkowicz, 2006
Engheta, 2006
Fernandes, 2005, Existence, uniqueness and finite element approximation of the solution of time-harmonic electromagnetic boundary value problems involving metamaterials, COMPEL, 24, 1450, 10.1108/03321640510615724
Fernandes, 2009, Well posedness and finite element approximability of time-harmonic electromagnetic boundary value problems involving bianisotropic materials and metamaterials, Math. Mod. Methods Appl. Sci., 19, 2299, 10.1142/S0218202509004121
Gottlieb, 2001, Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 89, 10.1137/S003614450036757X
Hao, 2008
Hiptmair, 2002, Finite elements in computational electromagnetism, Acta Numer., 11, 237, 10.1017/S0962492902000041
Hesthaven, 2008
Y. Huang, J. Li, Q. Lin, Superconvergence analysis for time-dependent Maxwell’s equations in metamaterials, Numer. Methods Part. Different. Eqs., in press.
Li, 2009, Posteriori error estimation for an interiori penalty discontinuous Galerkin method for Maxwell’s equations in cold plasma, Adv. Appl. Math. Mech., 1, 107
Li, 2009, Numerical convergence and physical fidelity analysis for Maxwell’s equations in metamaterials, Comput. Methods Appl. Mech. Engrg., 198, 3161, 10.1016/j.cma.2009.05.018
Li, 2009, Mixed methods using standard conforming finite elements, Comput. Methods Appl. Mech. Engrg., 198, 680, 10.1016/j.cma.2008.10.002
Li, 2007, Finite element analysis for wave propagation in double negative metamaterials, J. Sci. Comput., 32, 263, 10.1007/s10915-007-9131-2
Lin, 2008, Superconvergence analysis for Maxwell’s equations in dispersive media, Math. Comput., 77, 757, 10.1090/S0025-5718-07-02039-X
Lin, 1999, Global superconvergence for Maxwell’s equations, Math. Comput., 69, 159, 10.1090/S0025-5718-99-01131-X
Lin, 1996
Markos, 2008
Monk, 1994, Superconvergence of finite element approximations to Maxwell’s equations, Numer. Methods Part. Different. Eqs., 10, 793, 10.1002/num.1690100611
Monk, 2003
Nédélec, 1980, Mixed finite elements in R3, Numer. Math., 35, 315, 10.1007/BF01396415
Smith, 2000, Composite medium with simultaneously negative permeability and permittivity, Phys. Rev. Lett., 84, 4184, 10.1103/PhysRevLett.84.4184
Veselago, 2006, Negative refractive index materials, J. Comput. Theor. Nanosci., 3, 1, 10.1166/jctn.2006.3000
Wahlbin, 1995
Zhang, 2001, Superconvergent derivative recovery for the intermediate finite element family of the second order, IMA J. Numer. Anal., 21, 643, 10.1093/imanum/21.3.643
Zhong, 2009, Optimal error estimates for Nedelec edge elements for time-harmonic Maxwell’s equations, J. Comput. Math., 27, 563, 10.4208/jcm.2009.27.5.011