Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Siêu hội tụ cho các phần tử hữu hạn serendipity hình chữ nhật
Tóm tắt
Dựa trên sự khai triển trực giao và điều chỉnh trực giao trong một phần tử, siêu hội tụ tại các điểm đối xứng cho bất kỳ bậc nào của khai thác phần tử hữu hạn serendipity cho vấn đề elliptic bậc hai được chứng minh, và hành vi của nó đến ranh giới cũng được thảo luận.
Từ khóa
#siêu hội tụ #phần tử hữu hạn #serendipity #vấn đề elliptic #điểm đối xứngTài liệu tham khảo
Chen, C. M., Superconvergence of finite element solution and its derivatives, Numer. Math. J. Chinese Univ., 1981, 2: 118–125.
Douglas, J., Dupont, T., Wheeler, M., An L∞-estimate and a superconvergence result for a Galerkin method for elliptic equation based on tensor products of piecewise polynomials, RAIRO Model. Math. Anal. Numer., 1974, 8: 61–66.
Lesaint, P., Zlamal, M., Superconvergence of the gradient of finite element solutions, RAIRO Model. Math. Anal. Numer., 1979, 13: 139–166.
Zlamal, M., Some superconvergence results in the finite element method, Lecture Notes in Math. 606, Springer-Verlag, 1977, 353-362.
Zlamal, M., Superconvergence and reduced integration in the finite element method, Math. Comp., 1978, 32: 663–685.
Schatz, A., Sloan, I., Wahlbin, L., Superconvergence in finite element method and mesh that are locally symmetric with respect to a point, SIAM J. Numer. Anal., 1996,33: 505–526.
Wahlbin, L., Superconvergence in Galerkin Finite Element Methods, Berlin: Springer-Verlag, 1995.
Babuska, I., Strouboulis, T., Upadhyay, C. et al., Computer-based proof of the existence of superconvergence points in the finite element method; superconvergence of the derivatives in finite element solutons of Laplace’s, Poisson’s and the elasticity equations, Numer. Methods for PDE, 1996, 12: 347–392.
Babuska, I., Strouboulis, T., The Finite Element Method and Its Reliability, London: Oxford University Press, 2001.
Zhang, Z. M., Derivative superconvergent points in finite element solutions of Poisson’s equation for the serendipity and intermediate families—A theoretical justification, Math. Comp., 1998, 67: 541–552.
Chen, C. M., The element analysis method and superconvergence, in Finite Element Methods: Supercomver-gence, Post-processing and a Posteriori Estimates, Lecture Notes in Pure and Applied Mathematics (eds. Krizek, M., Neittaanmaki, P., Stenberg, R.), Vol. 196, New York: Marcel Dekker, Inc., 1998, 71–84.
Chen, C. M., Superconvergence for triangular finite elements, Science in China, Ser. A, 1999, 42(6): 917–924.
Chen, C. M., Structure Theory of Superconvergence for Finite Elements, Changsha: Hunan Science and Technique Press, 2001.
Frehse, J., Rannacher, R., Eine L1-Fehlerabschatzung diskreter Grundlosungen in der Methods der finiten Elemente, Tagungaband “Finite Elemente”, Bonn. Math. Schrift., 1975, 89: 92–114.
Rannacher, R., Scoot, R., Some optimal error estimates for piecewise linear finite element approximations, Math. Comp., 1982, 38: 437–445.
Chen, C. M., Optimal points of the approximation solution for Galerkin method for two-point boundary value problem, Numer. Math. J. Chinese Univ., 1979, 1: 73–79.
Chen, C. M., Xiong, Z. G., Interior superconvergence for a rectangular finite element with 12 parameters, Acta Sci. Nat. Univ. Norm. Hunan, 1999, 22: 1–7.
Fufaev, V., Dirichlet problem for domain with cusps, Soviet Math. Doklady, 1960, 113: 37–39.
Volkov, E., Differentiability properties of solutions of boundary value problems for the Laplace and Poisson equations on a rectangle, Steklov Institute publications, 1965, 77: 89–112.
Chen, C. M., W1,∞-interior estimates for finite element methods on regular mesh, J. Comput. Math., 1985, 3: 1–7.
Bramble, J. H., Nitsche, J. A., Schatz, A. H., Maximum-norm interior estimates for Ritz-Galerkin methods, Math. Comp., 1975, 29: 677–688.