Superconvergence by L 2 -projection for a stabilized finite volume method for the stationary Navier–Stokes equations
Tài liệu tham khảo
Douglas, 1973, Superconvergence for Galerkin methods for the two-point boundary problem via lacal projections, Numer. Math., 21, 270, 10.1007/BF01436631
Zlamal, 1978, Superconvergence and reduced intergration in the finite element method, Math. Comp., 32, 663, 10.1090/S0025-5718-1978-0495027-4
Wheeler, 1987, Superconvergence recovery of gradient on subdomains from piecewise linear finite element approximations, Numer. Methods Partial Differential Equations, 3, 65, 10.1002/num.1690030106
Douglas, 1989, A superconvergence for mixed finite element methods on rectangular domains, Calcolo, 26, 121, 10.1007/BF02575724
Ewing, 1991, Superconvergence of the velocity along the Gauss lines in mixed finite element methods, SIAM J. Numer. Anal., 28, 1015, 10.1137/0728054
Lin, 1996
Li, 2001, Superconvergence of coupling techniques in combined methods for elliptic equations with singularities, Comput. Math. Appl., 41, 379, 10.1016/S0898-1221(00)00281-9
Li, 2002, Global superconvergence of finite element methods for biharmonic equations and blending surfaces, Comput. Math. Appl., 44, 413, 10.1016/S0898-1221(02)00159-1
Wang, 2004, A superconvergence finite element scheme for the Reissner–Mindlin plate by projection methods, Int. J. Numer. Anal. Model., 1, 99
Liu, 2006, Global superconvergence for optimal control problems governed by Stokes equations, Int. J. Numer. Anal. Model., 3, 283
Brandts, 2006, Superconvergence of least-squares mixed finite elements, Int. J. Numer. Anal. Model., 3, 303
Wang, 2000, A superconvergence analysis for finite element solutions by the least-squares surface fitting on irregular meshes for smooth problems, J. Math. Study, 33, 229
Wang, 2001, Superconvergence of finite element approximations for the Stokes problem by projection methods, SIAM J. Numer. Anal., 39, 1001, 10.1137/S003614290037589X
Wang, 2002, Superconvergence analysis for the Navier–Stokes equations, Appl. Numer. Math., 41, 515, 10.1016/S0168-9274(01)00128-3
Li, 2007, Superconvergence of discontinuous Galerkin finite element method for the stationary Navier–Stokes equations, Numer. Methods Partial Differential Equations, 23, 421, 10.1002/num.20188
Li, 2009, Superconvergence by L2-projections for stabilized finite element methods for the Stokes equations, Int. J. Numer. Anal. Model., 6, 711
Ye, 2002, Superconvergence of nonconforming finite element method for the Stokes equations, Numer. Methods Partial Differential Equations, 18, 143, 10.1002/num.1036
Chou, 2007, Superconvergence of finite volume methods for the second order elliptic problem, Comput. Methods Appl. Mech. Engrg., 196, 3706, 10.1016/j.cma.2006.10.025
Cui, 2009, Superconvergence of finite volume methods for the Stokes equations, Numer. Methods Partial Differential Equations, 25, 1212, 10.1002/num.20399
Cai, 1991, The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal., 28, 392, 10.1137/0728022
Chen, 2006, The control volume finite element methods and their applications to multiphase flow, Netw. Heterog. Media, 1, 689, 10.3934/nhm.2006.1.689
Chou, 1999, Error estimates in L2,H1 and L∞ in co-volume methods for elliptic and parabolic problems: a unified approach, Math. Comp., 69, 103, 10.1090/S0025-5718-99-01192-8
Li, 1987, Generalized difference methods for a nonlinear Dirichlet problem, SIAM J. Numer. Anal., 24, 77, 10.1137/0724007
Bochev, 2006, Stabilization of low-order mixed finite elements for the Stokes equations, SIAM J. Numer. Anal., 44, 82, 10.1137/S0036142905444482
Li, 2007, A new stabilized finite element method for the transient Navier–Stokes equations, Comput. Methods Appl. Mech. Eng., 197, 22, 10.1016/j.cma.2007.06.029
Li, 2008, A stabilized finite element method based on two local gauss integrations for the Stokes equations, J. Comput. Appl. Math., 214, 58, 10.1016/j.cam.2007.02.015
Heywood, 1982, Finite-element approximations of the nonstationary Navier–Stokes problem. Part I: Regularity of solutions and second-order spatial discretization, SIAM J. Numer. Anal., 19, 275, 10.1137/0719018
Kellogg, 1976, A regularity result for the Stokes problem in a convex polygon, J. Funct. Anal., 21, 397, 10.1016/0022-1236(76)90035-5
Adams, 1975
Li, 2010, Convergence and stability of a stabilized finite volume method for the stationary Navier–Stokes equations, BIT, 50, 823, 10.1007/s10543-010-0277-1
He, 2008, A simplified two-level method for the steady Navier–Stokes equations, Comput. Methods Appl. Mech. Engrg., 197, 1568, 10.1016/j.cma.2007.11.032
Li, 2009, A new stabilized finite volume method for the stationary Stokes equations, Adv. Comput. Math., 30, 141, 10.1007/s10444-007-9060-5
Ciarlet, 1978
Ye, 2001, On the relationship between finite volume and finite element methods applied to the Stokes equations, Numer. Methods Partial Differential Equations, 5, 440, 10.1002/num.1021