Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Siêu tụ điện dựa trên tổng hợp hóa học tại chỗ của polypyrrole trên nền cao su: chế tạo và đặc trưng
Tóm tắt
Một siêu tụ điện dựa trên nền cao su nitrile butadiene (NBR) và polypyrrole (PPy) đã được phát triển trong nghiên cứu này. PPy được lắng đọng trên bề mặt của nền NBR, hoạt động như một chất điện phân rắn trong cấu trúc sandwich, sử dụng phương pháp tổng hợp hóa học tại chỗ đơn giản và nhanh chóng, trong đó có sử dụng muối đồng(II) perclorat. Hệ thống được đặc trưng bằng kính hiển vi quang học và kính hiển vi điện tử quét, phổ hồng ngoại, nhiệt trọng lượng và nhiệt vi sai. Hành vi điện hóa được nghiên cứu bằng kỹ thuật voltammetry tuần hoàn, chronoamperometry và kỹ thuật xả galvanostatic. Phương pháp chuẩn bị phồng cho phép đạt được độ bám dính phù hợp giữa PPy và ma trận đàn hồi, tạo ra một nền tảng hybrid linh hoạt cho các ứng dụng lưu trữ năng lượng. Hệ thống này cho thấy hành vi điện hóa gần như hồi phục và giá trị điện dung riêng cao tới 198,24 F g−1, đạt được ở tốc độ quét thấp hơn. Điều này làm cho cấu trúc sandwich PPy/NBR/PPy trở thành một hệ thống hứa hẹn cho thiết kế đa dạng của các thiết bị siêu tụ điện.
Từ khóa
#siêu tụ điện #polypyrrole #cao su nitrile butadiene #tổng hợp hóa học tại chỗ #tính chất điện hóaTài liệu tham khảo
Tanguy J, Mermilliod N, Hoclet M (1987) Capacitive charge and noncapacitive charge in conducting polymer electrodes. J Electrochem Soc 134:795–802. http://jes.ecsdl.org/content/134/4/795
Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733. https://doi.org/10.1021/nl101723g
Basnayaka PA, Ram MK, Stefanakos EK, Kumar A (2015) Nanostructured hybrid graphene-conducting polymers for electrochemical supercapacitor electrodes. In: Aliofkhazraei M, Makhlouf A (eds) Handbook of nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_33-1
Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34(8):1053–1060. https://doi.org/10.1016/S0014-3057(97)00204-8
Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun 16:578–580. https://doi.org/10.1039/C39770000578
Xie F, Kou C, Yuan Y, Zhu W, Zhu J, Zhu J, Zhu X, Pezzotti G (2016) High-performance supercapacitor based on polyaniline/poly(vinylidene fluoride) composite with KOH. Energy Technol 5:588–598. https://doi.org/10.1002/ente.201600395
Yun Y, Hua W, Rui H, Lin G (2016) Transition-metal-free biomolecule-based flexible asymmetric supercapacitors. Small 12:4683–4689. https://doi.org/10.1002/smll.201503924
Anukul KT, Ram BC (2016) High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synth Met 220:25–33. https://doi.org/10.1016/j.synthmet.2016.05.023
Shijie Z, Xiumei M, Baoyang L, Shouli M, Kaiwen L, Li Z, Jingkun X, Weiqiang Z (2014) Supercapacitor electrodes based on furan-EDOT copolymers via electropolymerization. Int J Electrochem Sci 9:7518–7527
Lehtimäki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 7(40):22137–22147. https://doi.org/10.1021/acsami.5b05937
Tohumcu C, Tas R, Can M (2014) Increasing the crystallite and conductivity of polypyrrole with dopant used. Ionics 20:1687–1692. https://doi.org/10.1007/s11581-014-1128-x
Lee S, Lee Y, Cho M-S, Nam J-D (2008) New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber. J Nanosci Nanotechnol 8:4722–4725. https://doi.org/10.1166/jnn.2008.IC43
Kossyrev P (2012) Carbon black supercapacitors employing thin electrodes. J Power Sources 201:347–352. https://doi.org/10.1016/j.jpowsour.2011.10.106
Bavio MA, Acosta GG, Kessler T (2015) Energy storage in symmetric and asymmetric supercapacitors based in carbon cloth/polyaniline–carbon black nanocomposites. Int J Energy Res 39:2053–2061. https://doi.org/10.1002/er.3441
Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834. https://doi.org/10.1016/j.rser.2014.10.068
Inal IIG, Holmes SM, Banford A, Aktas Z (2015) The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci 357:696–703. https://doi.org/10.1016/j.apsusc.2015.09.067
Giri S, Das CK, Kalra SS (2012) Preparation and characterization of the cobalt doped polyaniline/MWCNT nanocomposites for supercapacitor application. J Mater Sci Res. https://doi.org/10.5539/jmsr.v1n3p10
Hosseini M, Shahryari E (2016) Performance of polyaniline/manganese oxide-MWCNT nanocomposites as supercapacitors. Iran Chem Commun 4:67–77
Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001
Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J, Tang W (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52. https://doi.org/10.1016/j.electacta.2013.08.149
Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2014) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39:344–355. https://doi.org/10.1002/er.3247
Gao Z, Zhang Y, Song N, Li X (2017) Biomass derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5(2):69–88. https://doi.org/10.1080/21663831.2016.1250834
Cho HW, Hepowit LR, Nam H-S, Kim SH, Lee YM, Kim JH, Kim KM, Ko JM (2012) Synthesis and supercapacitive properties of electrodeposited polyaniline composite electrode on acrylonitrile-butadiene rubber as a flexible current collector. Synth Met 162:410–413. https://doi.org/10.1016/j.synthmet.2011.12.025
Hepowit LR, Kim KM, Kim SH, Ryu KS, Lee YM, Ko JM (2012) Supercapacitive properties of electrodeposited polypyrrole on acrylonitrile–butadiene rubber as a flexible current collector. Polym Bull 69:873–880. https://doi.org/10.1007/s00289-012-0791-1
Kim K (2015) High operating voltage supercapacitor using PPy/AC composite electrode based on simple dipping method. J Chem. https://doi.org/10.1155/2015/314893
Castillo-Ortega MM, Inoue MB, Inoue M (1989) Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant. Synth Met 28(1):65–70. https://doi.org/10.1016/0379-6779(89)90500-6
Sudhakar YN, Vindyashree Vidya Smitha, Prashanthi P, Poornesh R, Ashok M Selvakumar (2014) Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties. Polym Eng Sci 55:2118–2126. https://doi.org/10.1002/pen.24053
Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, pp 162–163
Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107
Chiu H-T, Chiang T-Y, Chen L-Y, Chang C-Y, Kuo M-T, Wang Y-X, Lee R (2011) Characteristics, nano-dispersibility and application of conducting polypyrrole inserted into nitrile rubber by single-step in situ polymerization. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2010.551440
Chiu H-T, Chiang T-Y, Chang C-Y, Kuo M-T (2013) Carbon black/polypyrrole/nitrile rubber conducting composites: synergistic properties and compounding conductivity effect. e-Polymers 11:412–427. https://doi.org/10.1515/epoly.2011.11.1.412
Forrest MJ (2001) Rubber analysis: polymers, compounds and products (Rapra review reports), vol 12, 7th edn. Smithers Rapra Press, Shrewsbury
Rajagopalan R, Iroh JO (2003) Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Appl Surf Sci 218:58–69. https://doi.org/10.1016/S0169-4332(03)00579-8
Scienza Lisete C, Thompson George E (2001) Preparation and surface analysis of PPY/SDBS films on aluminum substrates. Polímeros 11:142–148. https://doi.org/10.1590/S0104-14282001000300014
Kang ET, Tan KL, Neon KG et al (1989) XPS studies of iodine complexes of pyrrole—N-methylpyrrole copolymer. Polym Bull 21:53–57. https://doi.org/10.1007/BF00700268
Toledo M (2000) Thermal analysis systems, Usercom 11. http://www.mt.com/us/en/home/library/usercoms/lab-analytical-instruments/TA_UserCom11.html. Accessed 5 July 2018
Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052. https://doi.org/10.1039/c2jm14470k
Li S, Zhao C, Shu K, Wang C, Guo Z, Wallace GG, Liu H (2014) Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 79:554–562. https://doi.org/10.1016/j.carbon.2014.08.014