Siêu tụ điện dựa trên tổng hợp hóa học tại chỗ của polypyrrole trên nền cao su: chế tạo và đặc trưng

Polymer Bulletin - Tập 76 - Trang 1949-1965 - 2018
J. A. Huitrón-Gamboa1, J. C. Encinas1, M. M. Castillo-Ortega1, T. del Castillo-Castro1, H. Santacruz-Ortega1, D. E. Rodríguez-Félix1, O. Manero2
1Departamento de Investigación en Polímeros y Materiales, Universidad de Sonora, Hermosillo, Mexico
2Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Mexico City, Mexico

Tóm tắt

Một siêu tụ điện dựa trên nền cao su nitrile butadiene (NBR) và polypyrrole (PPy) đã được phát triển trong nghiên cứu này. PPy được lắng đọng trên bề mặt của nền NBR, hoạt động như một chất điện phân rắn trong cấu trúc sandwich, sử dụng phương pháp tổng hợp hóa học tại chỗ đơn giản và nhanh chóng, trong đó có sử dụng muối đồng(II) perclorat. Hệ thống được đặc trưng bằng kính hiển vi quang học và kính hiển vi điện tử quét, phổ hồng ngoại, nhiệt trọng lượng và nhiệt vi sai. Hành vi điện hóa được nghiên cứu bằng kỹ thuật voltammetry tuần hoàn, chronoamperometry và kỹ thuật xả galvanostatic. Phương pháp chuẩn bị phồng cho phép đạt được độ bám dính phù hợp giữa PPy và ma trận đàn hồi, tạo ra một nền tảng hybrid linh hoạt cho các ứng dụng lưu trữ năng lượng. Hệ thống này cho thấy hành vi điện hóa gần như hồi phục và giá trị điện dung riêng cao tới 198,24 F g−1, đạt được ở tốc độ quét thấp hơn. Điều này làm cho cấu trúc sandwich PPy/NBR/PPy trở thành một hệ thống hứa hẹn cho thiết kế đa dạng của các thiết bị siêu tụ điện.

Từ khóa

#siêu tụ điện #polypyrrole #cao su nitrile butadiene #tổng hợp hóa học tại chỗ #tính chất điện hóa

Tài liệu tham khảo

Tanguy J, Mermilliod N, Hoclet M (1987) Capacitive charge and noncapacitive charge in conducting polymer electrodes. J Electrochem Soc 134:795–802. http://jes.ecsdl.org/content/134/4/795 Hou Y, Cheng Y, Hobson T, Liu J (2010) Design and synthesis of hierarchical MnO2 nanospheres/carbon nanotubes/conducting polymer ternary composite for high performance electrochemical electrodes. Nano Lett 10:2727–2733. https://doi.org/10.1021/nl101723g Basnayaka PA, Ram MK, Stefanakos EK, Kumar A (2015) Nanostructured hybrid graphene-conducting polymers for electrochemical supercapacitor electrodes. In: Aliofkhazraei M, Makhlouf A (eds) Handbook of nanoelectrochemistry. Springer, Cham. https://doi.org/10.1007/978-3-319-15207-3_33-1 Kumar D, Sharma RC (1998) Advances in conductive polymers. Eur Polym J 34(8):1053–1060. https://doi.org/10.1016/S0014-3057(97)00204-8 Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1977) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH). J Chem Soc Chem Commun 16:578–580. https://doi.org/10.1039/C39770000578 Xie F, Kou C, Yuan Y, Zhu W, Zhu J, Zhu J, Zhu X, Pezzotti G (2016) High-performance supercapacitor based on polyaniline/poly(vinylidene fluoride) composite with KOH. Energy Technol 5:588–598. https://doi.org/10.1002/ente.201600395 Yun Y, Hua W, Rui H, Lin G (2016) Transition-metal-free biomolecule-based flexible asymmetric supercapacitors. Small 12:4683–4689. https://doi.org/10.1002/smll.201503924 Anukul KT, Ram BC (2016) High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synth Met 220:25–33. https://doi.org/10.1016/j.synthmet.2016.05.023 Shijie Z, Xiumei M, Baoyang L, Shouli M, Kaiwen L, Li Z, Jingkun X, Weiqiang Z (2014) Supercapacitor electrodes based on furan-EDOT copolymers via electropolymerization. Int J Electrochem Sci 9:7518–7527 Lehtimäki S, Suominen M, Damlin P, Tuukkanen S, Kvarnström C, Lupo D (2015) Preparation of supercapacitors on flexible substrates with electrodeposited PEDOT/graphene composites. ACS Appl Mater Interfaces 7(40):22137–22147. https://doi.org/10.1021/acsami.5b05937 Tohumcu C, Tas R, Can M (2014) Increasing the crystallite and conductivity of polypyrrole with dopant used. Ionics 20:1687–1692. https://doi.org/10.1007/s11581-014-1128-x Lee S, Lee Y, Cho M-S, Nam J-D (2008) New strategy and easy fabrication of solid-state supercapacitor based on polypyrrole and nitrile rubber. J Nanosci Nanotechnol 8:4722–4725. https://doi.org/10.1166/jnn.2008.IC43 Kossyrev P (2012) Carbon black supercapacitors employing thin electrodes. J Power Sources 201:347–352. https://doi.org/10.1016/j.jpowsour.2011.10.106 Bavio MA, Acosta GG, Kessler T (2015) Energy storage in symmetric and asymmetric supercapacitors based in carbon cloth/polyaniline–carbon black nanocomposites. Int J Energy Res 39:2053–2061. https://doi.org/10.1002/er.3441 Faraji S, Ani FN (2015) The development supercapacitor from activated carbon by electroless plating—a review. Renew Sustain Energy Rev 42:823–834. https://doi.org/10.1016/j.rser.2014.10.068 Inal IIG, Holmes SM, Banford A, Aktas Z (2015) The performance of supercapacitor electrodes developed from chemically activated carbon produced from waste tea. Appl Surf Sci 357:696–703. https://doi.org/10.1016/j.apsusc.2015.09.067 Giri S, Das CK, Kalra SS (2012) Preparation and characterization of the cobalt doped polyaniline/MWCNT nanocomposites for supercapacitor application. J Mater Sci Res. https://doi.org/10.5539/jmsr.v1n3p10 Hosseini M, Shahryari E (2016) Performance of polyaniline/manganese oxide-MWCNT nanocomposites as supercapacitors. Iran Chem Commun 4:67–77 Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes—a review. J Materiomics 2:37–54. https://doi.org/10.1016/j.jmat.2016.01.001 Liu Y, Wang H, Zhou J, Bian L, Zhu E, Hai J, Tang J, Tang W (2013) Graphene/polypyrrole intercalating nanocomposites as supercapacitors electrode. Electrochim Acta 112:44–52. https://doi.org/10.1016/j.electacta.2013.08.149 Ng CH, Lim HN, Lim YS, Chee WK, Huang NM (2014) Fabrication of flexible polypyrrole/graphene oxide/manganese oxide supercapacitor. Int J Energy Res 39:344–355. https://doi.org/10.1002/er.3247 Gao Z, Zhang Y, Song N, Li X (2017) Biomass derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5(2):69–88. https://doi.org/10.1080/21663831.2016.1250834 Cho HW, Hepowit LR, Nam H-S, Kim SH, Lee YM, Kim JH, Kim KM, Ko JM (2012) Synthesis and supercapacitive properties of electrodeposited polyaniline composite electrode on acrylonitrile-butadiene rubber as a flexible current collector. Synth Met 162:410–413. https://doi.org/10.1016/j.synthmet.2011.12.025 Hepowit LR, Kim KM, Kim SH, Ryu KS, Lee YM, Ko JM (2012) Supercapacitive properties of electrodeposited polypyrrole on acrylonitrile–butadiene rubber as a flexible current collector. Polym Bull 69:873–880. https://doi.org/10.1007/s00289-012-0791-1 Kim K (2015) High operating voltage supercapacitor using PPy/AC composite electrode based on simple dipping method. J Chem. https://doi.org/10.1155/2015/314893 Castillo-Ortega MM, Inoue MB, Inoue M (1989) Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant. Synth Met 28(1):65–70. https://doi.org/10.1016/0379-6779(89)90500-6 Sudhakar YN, Vindyashree Vidya Smitha, Prashanthi P, Poornesh R, Ashok M Selvakumar (2014) Conversion of pencil graphite to graphene/polypyrrole nanofiber composite electrodes and its doping effect on the supercapacitive properties. Polym Eng Sci 55:2118–2126. https://doi.org/10.1002/pen.24053 Bard AJ, Faulkner LR (2000) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York, pp 162–163 Qu D, Shi H (1998) Studies of activated carbons used in double-layer capacitors. J Power Sources 74:99–107 Chiu H-T, Chiang T-Y, Chen L-Y, Chang C-Y, Kuo M-T, Wang Y-X, Lee R (2011) Characteristics, nano-dispersibility and application of conducting polypyrrole inserted into nitrile rubber by single-step in situ polymerization. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2010.551440 Chiu H-T, Chiang T-Y, Chang C-Y, Kuo M-T (2013) Carbon black/polypyrrole/nitrile rubber conducting composites: synergistic properties and compounding conductivity effect. e-Polymers 11:412–427. https://doi.org/10.1515/epoly.2011.11.1.412 Forrest MJ (2001) Rubber analysis: polymers, compounds and products (Rapra review reports), vol 12, 7th edn. Smithers Rapra Press, Shrewsbury Rajagopalan R, Iroh JO (2003) Characterization of polyaniline–polypyrrole composite coatings on low carbon steel: a XPS and infrared spectroscopy study. Appl Surf Sci 218:58–69. https://doi.org/10.1016/S0169-4332(03)00579-8 Scienza Lisete C, Thompson George E (2001) Preparation and surface analysis of PPY/SDBS films on aluminum substrates. Polímeros 11:142–148. https://doi.org/10.1590/S0104-14282001000300014 Kang ET, Tan KL, Neon KG et al (1989) XPS studies of iodine complexes of pyrrole—N-methylpyrrole copolymer. Polym Bull 21:53–57. https://doi.org/10.1007/BF00700268 Toledo M (2000) Thermal analysis systems, Usercom 11. http://www.mt.com/us/en/home/library/usercoms/lab-analytical-instruments/TA_UserCom11.html. Accessed 5 July 2018 Dubal DP, Lee SH, Kim JG, Kim WB, Lokhande CD (2012) Porous polypyrrole clusters prepared by electropolymerization for a high performance supercapacitor. J Mater Chem 22:3044–3052. https://doi.org/10.1039/c2jm14470k Li S, Zhao C, Shu K, Wang C, Guo Z, Wallace GG, Liu H (2014) Mechanically strong high performance layered polypyrrole nano fibre/graphene film for flexible solid state supercapacitor. Carbon 79:554–562. https://doi.org/10.1016/j.carbon.2014.08.014