Superb Strengthening Effect of Net-Like Distributed Amorphous Al2O3 on Creep Resistance of (B4C + Al2O3)/Al Neutron-Absorbing Materials
Tóm tắt
B4C reinforced Al composites are widely used as neutron absorbing materials (NAMs) due to excellent neutron absorbing efficiency, however, such NAMs exhibit poor high-temperature properties. To meet the requirement for structure–function integration, NAMs with enhanced high-temperature mechanical properties are desired. In this work, a novel (B4C + Al2O3)/Al NAM with netlike distribution of Al2O3 was fabricated by powder metallurgy method and subjected to high-temperature tensile creep test. It was shown that the creep resistance was enhanced by several orders of magnitude via the addition of only 2.1 vol.% netlike-distributed Al2O3. (B4C + Al2O3)/Al exhibited high apparent stress exponents ranging from 16 to 25 and high apparent activation energy of 364 kJ/mol. The creep behaviour could be rationalized using the substructure-invariant model and its rupture behaviour could be described by the Dobes-Milicka equation.
Tài liệu tham khảo
Y.N. Zan, Y.T. Zhou, H. Zhao, Z.Y. Liu, Q.Z. Wang, D. Wang, W.G. Wang, B.L. Xiao, Z.Y. Ma, Compos. Pt. B- Eng. 183, 107674 (2020)
Y.N. Zan, Y.T. Zhou, Z.Y. Liu, Q.Z. Wang, W.G. Wang, D. Wang, B.L. Xiao, Z.Y. Ma, Mater. Sci. Eng. A 773, 138840 (2020)
L. Zhou, M. Li, Q.Z. Wang, C. Cui, B.L. Xiao, Z.Y. Ma, Acta Metall. Sin-Engl. Lett. 56, 1155 (2020)
A. Machiels, R. Lanmbert, Handbook of neutron absorber materials for spent nuclear fuel transportation and storage applications, EPRI Report, EPRI, Palo Alto, California (2009).
X.G. Chen, L. St-Georges, M. Roux, Mater. Sci. Forum 706–709, 631 (2012)
J. Qin, Z. Zhang, X.G. Chen, Metall. Mater. Trans. A 47, 4694 (2016)
Y.N. Zan, Q. Zhang, Y.T. Zhou, Q.Z. Wang, B.L. Xiao, Z.Y. Ma, J. Nucl. Mater. 526, 151788 (2019)
K. Hu, Q. Xu, X. Ma, Q. Sun, T. Gao, X. Liu, J. Mater. Sci. Technol. 35, 306 (2019)
Y.H. Gao, C. Yang, J.Y. Zhang, L.F. Cao, G. Liu, J. Sun, E. Ma, Mater. Res. Lett. 7, 18 (2019)
Y. Zhang, X. Li, Nano Lett. 17, 6907 (2017)
X.X. Pang, Y.J. Xian, W. Wang, P.C. Zhang, J. Alloys Compd. 768, 476 (2018)
W. Liu, Q.L. Li, W. Liu, G.G. Shu, Q. Sun, C.Q. Ye, Key Eng. Mater. 753, 84 (2017)
Y.N. Zan, B.B. Wang, Y.T. Zhou, C.L. Jia, Z.Y. Liu, Q.Z. Wang, B. Xiao, Z.Y. Ma, Sci. China Technol. Sci. 63, 1256 (2020)
Z.Y. Ma, S.C. Tjong, Compos. Sci. Technol. 61, 771 (2001)
R. Gupta, B.S.S. Daniel, Mater. Charact. 169, 110594 (2020)
D.S. Ng, D.C. Dunand, Mater. Sci. Eng. A 786, 139398 (2020)
F.A. Mohamed, T.G. Langdon, Acta Metall. 22, 779 (1974)
M. Zhang, R.J. Lewis, J.C. Gibeling, Mater. Sci. Eng. A 805, 140796 (2021)
C. Ahn, I. Jo, C. Ji, S. Cho, B. Mishra, E. Lee, Mater. Charact. 167, 9 (2020)
D. Gong, L. Jiang, J. Guan, K. Liu, Z. Yu, G. Wu, Mater. Sci. Eng. A 770, 138551 (2020)
Y.M. Ji, Y.P. Yuan, W.Z. Zhang, Y.Q. Xu, Y.W. Liu, Materials 14, 16 (2021)
D. Gong, Y. Cao, Y. Zhan, X. Liu, J. Guan, L. Jiang, P. Kang, Z. Yu, M. Hussain, G. Wu, Mater. Sci. Eng. A 771, 138606 (2020)
K. Kawabata, E. Sato, K. Kuribayashi, Acta Mater. 50, 3465 (2002)
E. Gariboldi, M. Vedani, Adv. Eng. Mater. 2, 737 (2000)
A.H. Monazzah, A. Simchi, S.M.S. Reihani, Mater. Sci. Eng. A 527, 2567 (2010)
D. Kurumlu, E.J. Payton, M.L. Young, M. Schobel, G. Requena, G. Eggeler, Acta Mater. 60, 67 (2012)
G. González-Doncel, O.D. Sherby, Acta Metall. Mater. 41, 2797 (1993)
Z.Y. Ma, S.C. Tjong, Y.L. Li, Y. Liang, Mater. Sci. Eng. A 225, 125 (1997)
E. Arzt, E. Göhring, Scr. Metall. Mater. 28, 843 (1993)
E. Arzt, M.F. Ashby, Scr. Metall. 16, 1285 (1982)
S.L. Robinson, C.M. Young, O.D. Sherby, J. Mater. Sci. 9, 341 (1974)
T.S. Lundy, J.F. Murdock, J. Appl. Phys. 33, 1671 (1962)
J. Bird, A. Mukherjee, J. Dorn, Quantitative Relation Between Properties and Microstructure, Israel Universities Press, Jerusalem, 255 (1969).
F. Dobeš, K. Milička, Mater. Sci. 10, 382 (1976)