Superattracting cycles for some Newton type iterative methods

Science China Mathematics - Tập 54 - Trang 539-544 - 2011
Sergio Amat1, Sonia Busquier1, Emilie Navarro2, Sergio Plaza3
1Departamento de Matemática Aplicada y Estadística, Universidad Politécnica de Cartagena, Cartagena, Spain
2Ecole Généraliste d’Ingénieurs de Marseille (EGIM), Marseille, France
3Departamento de Matemáticas, Facultad de Ciencias, Universidad de Santiago de Chile, Santiago, Chile

Tóm tắt

The paper is devoted to the analysis of certain dynamical properties of a family of iterative Newton type methods used to find roots of non-linear equations. We present a procedure for constructing polynomials in such a way that superattracting cycles of any prescribed length occur when these iterative methods are applied. This paper completes the study begun in Amat, Bermúclez, Busquier, et al., (2009).

Tài liệu tham khảo

Amat S, Bermúdez C, Busquier S, et al. On the dynamics of some Newton’s type iterative functions. Int J Comput Math, 2009, 86: 631–639 Barna B. Über die Divergenspunkte des Newtonschen Verfahrens zur Bestimmung von Wurzeln algebraischen Gleichungen II. Publ Math Debrecen, 1956, 4: 384–397 Bergweiler W. Iteration of meromorphics functions. Bull Amer Math Soc, 1993, 29: 151–188 Blanchard P. Complex analytic dynamics on the Riemann sphere. Bull Amer Math Soc, 1984, 11: 85–141 Cayley A. The Newton-Fourier imaginary problem. Amer J Math, 1879, 2: 97 Cayley A. On the Newton-Fourier imaginary problem. Proc Cambridge Phil Soc, 1880, 3: 231–232 Cosnard M, Masse C. Convergence presque partout de la methode de Newton. C R Math Acad Sci Paris, 1983, 297: 549–552 Curry J H, Garnett L, Sullivan D. On the iteration of a rational function: computer experiment with Newton’s method. Comm Math Phys, 1983, 91: 267–277 Ezquerro J A, Salanova M A. A note on a family of Newton type iterative processes. Int J Comput Math, 1996, 62: 223–232 Hernández M A, Salanova M A. A family of Newton type iterative processes. Int J Comput Math, 1994, 51: 205–214 Hurley M. Attracting orbits in Newton’s method. Trans Amer Math Soc, 1986, 237: 143–158 Peitgen H O, ed. Newton’s Method and Dynamical Systems. Dordrecht: Kluwer Academic Publishers, 1989 Plaza S, Vergara V. Existence of attracting cycles for Newton’s method. Sci Ser A Math Sci (N S), 2001, 7: 31–36 Vrscay E. Julia sets and Mandelbrot-like sets associated with higher order Schröder rational iteration functions: a computer assisted study. Math Comp, 1986, 46: 151–169 Vrscay E, Gilbert G. Extraneous fixed points, basin boundary and chaotic dynamics for Schröder and König rational iteration functions. Numer Math, 1988, 52: 1–16