Siêu phân giải hình ảnh nhiều khung bị mờ thông qua việc lấy lại sự rõ nét nhiều khung sử dụng phương pháp ADMM

Multimedia Tools and Applications - Tập 76 - Trang 13563-13579 - 2016
Qizi Huangpeng1, Xiangrong Zeng1, Quan Sun1, Jun Fan1, Jing Feng1, Zhengqiang Pan1
1College of Information System and Management, National University of Defense Technology, Changsha, People’s Republic of China

Tóm tắt

Siêu phân giải nhiều khung (MFSR) nhằm tái tạo một hình ảnh có độ phân giải cao (HR) từ một tập hợp các hình ảnh có độ phân giải thấp (LR). Tuy nhiên, MFSR là một bài toán không xác định và thường đòi hỏi tính toán tốn kém. Trong bài viết này, chúng tôi đề xuất việc siêu phân giải nhiều khung LR bị suy giảm của cảnh gốc thông qua việc lấy lại sự rõ nét nhiều khung (MFDB). Đầu tiên, chúng tôi đề xuất một mô hình tiến mới cho MFSR và tái định hình bài toán MFSR thành bài toán MFDB dễ dàng giải quyết hơn. Chúng tôi tiếp tục giải quyết bài toán MFDB, trong đó các bài toán tối ưu liên quan đến hình ảnh ẩn và mờ ẩn được giải quyết một cách hiệu quả bằng phương pháp hướng thay thế của các bội số (ADMM). Phương pháp của chúng tôi giúp kết nối khoảng cách giữa MFSR và MFDB, tận dụng các phương pháp MFDB hiện có để xử lý MFSR. Các thí nghiệm trên hình ảnh tổng hợp và thực tế cho thấy phương pháp được đề xuất có tính cạnh tranh và hiệu quả về tốc độ cũng như chất lượng phục hồi.

Từ khóa

#siêu phân giải #hình ảnh nhiều khung #deblur #ADMM #hồi phục hình ảnh

Tài liệu tham khảo

Afonso MV, Bioucas-Dias JM, Figueiredo MAT (2010) Fast Image Recovery Using Variable Splitting and Constrained Optimization. IEEE Transactions on Image Process 19(9):2345–2356 Baker S, Scharstein D, Lewis J, Roth S, Black MJ, Szeliski R (2007) A database and evaluation methodology for optical flow, In ICCV Boyd S, Parikh N, Chu E, Peleato B, Eckstein J (2011) Distributed optimization and statistical learning via the alternating direction method of multipliers. Foundations and Trends in Machine Learning 3:1–122 Capel. D (2004) Image Mosaicing and Super-resolution. Springer, London Carles G, Downing J, Harvey AR (2014) Super-resolution imaging using a camera array. Opt Lett 39(7):1889–1892 Chaudhuri S (2001) Super-Resolution Imaging. Kluwer Academic Publishers, Boston Chiang MC, Boulte TE (2000) Efficient super-resolution via image warping. Image Vis Comput 18(10):761–771 Combettes P, Pesquet J-C (2011) Proximal splitting methods in signal processing, in fixed-point algorithms for inverse problems in science and engineering Bauschke H et al (Eds), pp. 185–212, Springer Dong WS, Shi GM, Hu XC, Ma Y (2014) Nonlocal Sparse and Low-rank Regularization for Optical Flow Estimation. IEEE Transactions on Image Process. 23(10):4527–4538 Duchi J, Shalev-Shwartz S, Singer Y, Chandra T (2008) Efficient projections onto the l1-ball for learning in high dimensions, in Proc. 25th international conference on Machine learning, pp. 272–279. Farsiu S, Dirk Robinson M, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344 Ferreira RU, Hung EM, Queiroz RLD (2015) Clustering of matched features and gradient matching for mixed-resolution video super-resolution. IEEE international symposium on circuits & systems, pp. 1202–1205 Gabay D, Mercier B (1976) A dual algorithm for the solution of nonlinear variational problems via nite element approximations. Computers and Mathematics with Applications 2:17–40 Goldstein T, Osher S (2009) The split bregman method for l1-regularized problems. SIAM Journal on Imaging Sciences 2:323–343 Hardie RC, Barnard KJ, Armstrong EE (1997) Join MAP registration and high resolution image estimation using a sequence of undersampled images. IEEE Trans Image Process 6(12):1621–1633 Hartley RI, Zisserman A (2004) Multiple view geometry in computer vision, 2n edition. Cambridge University Press, New York He Y, Yap KH, Chen L, Chau LP (2007) Image registration and super-resolution. IEEE Trans Image Process 16(11):2830–2841 Horn B, Schunck B (1981) Determining optical flow. Artif Intell 16:185–203 Huang T, Tsai R (1984) Multi-frame image restoration and registration. Advances in Computer Vision and Image Processing 1:317–339 Huangpeng Q, Zeng X, Fan J, Feng J Sun Q (2015) Improved multi-frame super resolution via multi-frame blind deblurring using the alternating direction method of multipliers, IEEE International Conference on Progress in Informatics and Computing, Nanjing, 18–20 December, 2015, pp 281–285 Irani M, Peleg S (1990) Super resolution from image sequences. In Proceedings of 10th International Conference on Pattern Recognition, 2:115–120 Katsaggelos AK , Molina R, Mateos J (2007) Super resolution of images and video, Morgan and Claypool, San Rafael Keren D, Peleg S, Brada R (1988) Image sequence enhancement using subpixel displacements. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages 742–746 Kim SP, Bose NK, Valenzuela HM (1990) Recursive reconstruction of high resolution image from noisy undersampled multiframes. IEEE Trans Acoust Speech Signal Process 38:1013–1027 Kotera J, Šroubek F, Milanfar P (2013) Blind deconvolution using alternating maximum a posteriori estimation with heavy-tailed priors. Lectures Notes in Computer Science 8048:59–66 Krishnan D, Fergus R (2009a) Fast image deconvolution using hyper-laplacian priors Krishnan D, Fergus R (2009b) Fast image deconvolution using hyper-laplacian priors Lee ES, Kang MG (2003) Regularized Adaptive High-Resolution Image Reconstruction Considering Inaccurate Subpixel Registration. IEEE Trans Image Process 12(7):826–837 Liu L, Liu B,Huang H, Bovik AC (2014a) “SSEQ Software Release”, URL: http://live.ece.utexas.edu/research/quality/SSEQ_release.zip Liu L, Liu B, Huang H, Bovik AC (2014b) "No-reference Image Quality Assessment Based on Spatial and Spectral Entropies",. Signal Process Image Commun 29(8):856–863 Milanfar P (2010) Super-Resolution imaging, digital imaging and computer vision. Taylor&Francis, Boca Raton Mitzel D, Pock T, Schoenemann T, Cremers D (2009) Video Super Resolution using Duality Based TV-L1 Optical Flow. Lect Notes Comput Sci. 5748:432–441 Shen H, Zhang L, Huang B, Li P (2007) A MAP approach for joint motion estimation, segmentation and super-resolution. IEEE Trans Image Process 16(2):479–490 Šroubek F, Cristóbal G, Flusser J (2007) A Unified Approach to Superresolution and Multichannel Blind Deconvolution. IEEE Trans Image Process 16(9):2322–2332 Šroubek F, Flusser J, Cristóbal G Multiframe blind deconvolution coupled with frame registration and resolution enhancement, Blind Image Deconvolution: Theory Appl, pp. 317–348 , Eds: Campisi P, Egiazarian K Stark H, Oskoui P (1989) High resolution image recovery from imageplane arrays, using convex projections. J. Opt. Soc. Amer A 6:1715–1726 Takeda H, Farsiu S, Milanfar P (2007) Kernel regression for image processing and reconstruction. IEEE Trans Image Process 16(2):349–366 Tom BC, Katsaggelos AK, Galatsanos NP (1994) Reconstruction of a high resolution image from registration and restoration of low resolution images. In Proceedings of IEEE international conference on image processing, pp. 553–557 Tom BC, Katsaggelos AK, Galatsanos NP (1994) Reconstruction of a high resolution image from registration and restoration of low resolution images. In Proceedings of IEEE international conference on image processing, pp 553–557 Wedel A, Pock T, Cremers D (2009) Structure- and motion-adaptive regularization for high accuracy optic flow, In ICCV Zhao WY, Sawhney H (2002) Is super-resolution with optical flow feasible? Computer vision — ECCV Volume 2350 of the series lecture notes in computer science pp 599–613 Villena S, Vega M, Babacan SD, Molina R, Katsaggelos AK (2013) Bayesian combination of sparse and non sparse priors in image super resolution. Digital Signal Processing 23(2):530–541