Super-conductive silver nanoparticles functioned three-dimensional CuxO foams as a high-pseudocapacitive electrode for flexible asymmetric supercapacitors

Journal of Materiomics - Tập 7 - Trang 156-165 - 2021
Hui Jiang1, Xuehua Yan1,2,3, Jieyu Miao1, Mingyu You1, Yihan Zhu1, Jianmei Pan1, Le Wang1, Xiaonong Cheng1
1School of Materials Science and Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
2Institute for Advanced Materials, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
3Institute of Green Materials and Metallurgy, Jiangsu University, Zhenjiang, 212013, Jiangsu, China

Tài liệu tham khảo

Nagaraju, 2019, An agriculture-inspired nanostratergy towards flexible and highly efficient hybrid supercapacitors using ubiquitous substrates, Nano Energy, 66, 104054, 10.1016/j.nanoen.2019.104054 Gao, 2017, Energy storage applications of biomass-derived carbon materials: batteries and supercapacitors, New J Chem, 41, 11456, 10.1039/C7NJ02580G Seevakan, 2018, Structural, morphological and magneto-optical properties of CuMoO4 electrochemical nanocatalyst as supercapacitor electrode, Ceram Int, 44, 20075, 10.1016/j.ceramint.2018.07.282 Wu, 2016, A scalable free-standing V2O5/CNT film electrode for supercapacitors with a wide operation voltage (1.6V) in an aqueous electrolyte, Adv Funct Mater, 26, 6114, 10.1002/adfm.201601811 Zhou, 2015, Freestanding MnO2 nanoflakes/porous carbon nanofibers for high-performance flexible supercapacitor electrodes, Electrochim Acta, 161, 427, 10.1016/j.electacta.2015.02.085 Yan, 2014, Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities, Adv. Energy Mater., 4, 1300816, 10.1002/aenm.201300816 Dong, 2016, Flexible electrodes and supercapacitors for wearable energy storage: a review by category, J Mater Chem, 4, 4659, 10.1039/C5TA10582J Chen, 2018, Enhancing pseudocapacitive kinetics of nanostructured MnO2 through anchoring onto biomass-derived porous carbon, Appl Surf Sci, 440, 1027, 10.1016/j.apsusc.2018.01.224 Ahmani, 2019, Nanocomposite of copper-molybdenum-oxide nanosheets with graphene as high-performance materials for supercapacitors, J Alloys Compd, 784, 500, 10.1016/j.jallcom.2018.12.353 Kazemi, 2014, Electrodeposited manganese dioxide nanostructures on electro-etched carbon fibers: high performance materials for supercapacitor applications, Mater Res Bull, 60, 137, 10.1016/j.materresbull.2014.08.032 Zhang, 2020, Oxygen-functionalized soft carbon nanofibers as high-performance cathode of K-ion hybrid capacitor, Nano Energy, 72, 10.1016/j.nanoen.2020.104661 Guo, 2020, High-performance asymmetric supercapacitors using holey graphene electrodes and redox electrolytes, Carbon, 157, 298, 10.1016/j.carbon.2019.10.048 Sun, 2019, Ultralight carbon aerogel with tubular structures and N-containing sandwich-like wall from kapok fibers for supercapacitor electrode materials, J Power Sources, 438, 227030, 10.1016/j.jpowsour.2019.227030 Oschatz, 2017, Carbide-derived carbon aerogels with tunable pore structure as versatile electrode material in high power supercapacitors, Carbon, 113, 283, 10.1016/j.carbon.2016.11.050 Liu, 2019, Three-dimensional interconnected cobalt sulfide foam: controllable synthesis and application in supercapacitor, Electrochim Acta, 317, 551, 10.1016/j.electacta.2019.05.121 Huang, 2020, Scalable and low-cost treating-cutting-coating manufacture platform for MXene-based on-chip micro-supercapacitors, Nano Energy, 69, 104431, 10.1016/j.nanoen.2019.104431 Jiang, 2020, Review of MXene electrochemical microsupercapacitors, Energy Storage Mater., 27, 78, 10.1016/j.ensm.2020.01.018 Meng, 2017, Research progress on conducting polymer based supercapacitor electrode materials, Nano Energy, 36, 268, 10.1016/j.nanoen.2017.04.040 Poonam, 2019, Review of supercapacitors: materials and devices, J. Energy Storage, 21, 801, 10.1016/j.est.2019.01.010 Liu, 2004, NiO-based composite electrode with RuO2 for electrochemical capacitors, Electrochim Acta, 49, 229, 10.1016/j.electacta.2003.08.005 Zou, 2020, Facile synthesis of freestanding cellulose/RGO/silver/Fe2O3 hybrid film for ultrahigh-areal-energy-density flexible solid-state supercapacitor, Appl Surf Sci, 500, 144244, 10.1016/j.apsusc.2019.144244 L. Wang, M. Huang, S. Chen, L. Kang, X. He, δ-MnO2 nanofiber/single-walled carbon nanotube hybrid film for all-solid-state flexible supercapacitors with high performance, J. Mater. Chem. 5 (36) 19107-19115. X. Zhou, Q. Chen, A. Wang, J. Xu, S. Wu, J. Shen, The bamboo-like composites of V2O5/polyindole and activated carbon cloth as electrodes for all-solid-state flexible asymmetric supercapacitors, ACS Appl Mater Interfaces 8 (6) 3776–3783. Wang, 2019, High performance 3D CuO/Cu flowers supercapacitor electrodes by femtosecond laser enhanced electrochemical anodization, Electrochim Acta, 293, 273, 10.1016/j.electacta.2018.09.144 Lu, 2018, Ionic-liquid-assisted one-pot synthesis of Cu2O nanoparticles/multi-walled carbon nanotube nanocomposite for high-performance asymmetric supercapacitors, RSC Adv, 8, 20182, 10.1039/C8RA02951B Shinde, 2019, Using chemical bath deposition to create nanosheet-like CuO electrodes for supercapacitor applications, Colloids Surf, B, 181, 1004, 10.1016/j.colsurfb.2019.05.079 Patil, 2019, New design of all-solid state asymmetric flexible supercapacitor with high energy storage and long term cycling stability using m-CuO/FSS and h-CuS/FSS electrodes, Electrochim Acta, 307, 30, 10.1016/j.electacta.2019.03.108 Das, 2019, Substrate-free and shapeless planar micro-supercapacitor, Adv Funct Mater, 30, 1908758, 10.1002/adfm.201908758 Zhang, 2020, MXene coupled with molybdenum dioxide nanoparticles as 2D-0D pseudocapacitive electrode for high performance flexible asymmetric micro-supercapacitors, J. Materiomics, 6, 138, 10.1016/j.jmat.2019.12.013 Zhang, 2019, Shape-tailorable high-energy asymmetric micro-supercapacitors based on plasma reduced and nitrogen-doped graphene oxide and MoO2 nanoparticles, J Mater Chem A, 7, 14328, 10.1039/C9TA03620B Cao, 2020, Free-standing porous carbon foam as the ultralight and flexible supercapacitor electrode, Carbon, 161, 224, 10.1016/j.carbon.2020.01.093 Liu, 2020, Co-ZIF derived porous NiCo-LDH nanosheets/N doped carbon foam for high-performance supercapacitor, Carbon, 165, 129, 10.1016/j.carbon.2020.04.084 Azad, 2020, MWCNTs/NiS2 decorated Ni foam based electrode for high-performance supercapacitors, Electrochim Acta, 345, 136196, 10.1016/j.electacta.2020.136196 Ren, 2018, Stretchable all-solid-state supercapacitors based on highly conductive polypyrrole-coated graphene foam, Chem Eng J, 349, 111, 10.1016/j.cej.2018.05.075 He, 2020, In-situ growth of flexible 3D hollow tubular Cu2S nanorods on Cu foam for high electrochemical performance supercapacitor, J. Materiomics, 6, 192, 10.1016/j.jmat.2020.01.005 Wu, 2019, Rational design of integrated CuO@CoxNi1-x(OH)2 nanowire arrays on copper foam for high-rate and long-life supercapacitors, Electrochim Acta, 295, 759, 10.1016/j.electacta.2018.10.183 He, 2017, Construction of leaf-like CuO-Cu2O nanocomposite on copper foam for high-performance supercapacitors, Dalton Trans, 46, 3318, 10.1039/C7DT00287D Dubal, 2013, Mild chemical strategy to grow micro-roses and micro-woolen like arranged CuO nanosheets for high performance supercapacitors, J Power Sources, 242, 687, 10.1016/j.jpowsour.2013.05.013 Yin, 2005, Copper oxide nanocrystals, J Am Chem Soc, 127, 9506, 10.1021/ja050006u Majumder, 2017, Impact of rare-earth metal oxide (Eu2O3) on the electrochemical properties of a polypyrrole/CuO polymeric composite for supercapacitor applications, RSC Adv, 7, 20037, 10.1039/C7RA01438D Niu, 2016, Facilely synthesis of 3D CuxO-Cu nanostructures as binder-free electrode for supercapacitors, Chem Phys Lett, 652, 172, 10.1016/j.cplett.2016.04.006 Wang, 2015, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor, Electrochim Acta, 152, 433, 10.1016/j.electacta.2014.11.171 Li, 2012, Nanostructured CuO directly grown on copper foam and their supercapacitance performance, Electrochim Acta, 85, 393, 10.1016/j.electacta.2012.07.127 Shinde, 2015, Hierarchical 3D-flower-like CuO nanostructure on copper foil for supercapacitors, RCS Adv., 5, 4443 Shu, 2018, Supercapacitive performance of single phase CuO nanosheet arrays with ultra-long cycling stability, J Alloys Compd, 753, 731, 10.1016/j.jallcom.2018.03.267 Chen, 2016, Construction of unique cupric oxide–manganese dioxide core–shell arrays on a copper grid for high performance supercapacitors, J Mater Chem, 4, 10786, 10.1039/C6TA04258A Conway, 1999 Wang, 2016, Electrochemical capacitors: mechanism, materials, systems, characterization and applications, Chem Soc Rev, 45, 5925, 10.1039/C5CS00580A Augustyn, 2013, High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance, Nat Mater, 12, 518, 10.1038/nmat3601 Brezesinski, 2010, Ordered mesoporous α-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors, Nat Mater, 9, 146, 10.1038/nmat2612 Javed, 2016, Tracking pseudocapacitive contribution to superior energy storage of MnS nanoparticles grown on carbon textile, ACS Appl Mater Interfaces, 8, 24621, 10.1021/acsami.6b07924 Zhang, 2019, Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays, J Power Sources, 418, 202, 10.1016/j.jpowsour.2019.02.041 Wang, 2007, Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles, J Phys Chem C, 111, 14925, 10.1021/jp074464w Zhu, 2016, Design and construction of three-dimensional CuO/polyaniline/rGO ternary hierarchical architectures for high performance supercapacitors, J Power Sources, 306, 593, 10.1016/j.jpowsour.2015.12.059 Cha, 2017, A facile drop-casting approach to nanostructured copper oxide-painted conductive woven textile as binder-free electrode for improved energy storage performance in redox-additive electrolyte, J Mater Chem A, 5, 2224, 10.1039/C6TA10428B Purushothaman, 2014, Nanostructured CuO/reduced graphene oxide composite for hybrid supercapacitors, RSC Adv, 4, 23485, 10.1039/c4ra02107j Zhou, 2014, Facile preparation of polypyrrole/graphene oxide nanocomposites with large areal capacitance using electrochemical codeposition for supercapacitors, J Power Sources, 263, 259, 10.1016/j.jpowsour.2014.04.039 Jian, 2017, Carbon quantum dots reinforced polypyrrole nanowire via electrostatic self-assembly strategy for high-performance supercapacitors, Carbon, 114, 533, 10.1016/j.carbon.2016.12.033