Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Lưu huỳnh trong nghêu lucinid ức chế tốc độ tiêu thụ của một loài chim nước ăn động vật thân mềm
Tóm tắt
Tốc độ thu nhận năng lượng của một loài đi tìm thức ăn thường bị hạn chế bởi sự kết hợp giữa thời gian xử lý, tỷ lệ gặp gỡ và tỷ lệ tiêu hóa. Bên cạnh đó, việc thu nhận thức ăn có thể bị hạn chế khi một loài đi tìm thức ăn chỉ có thể xử lý một lượng tối đa các hợp chất độc hại nhất định. Ràng buộc sau được mô tả rõ ràng ở các loài ăn cỏ có khả năng chịu đựng hạn chế đối với các hợp chất thứ cấp từ thực vật. Trong hệ sinh thái biển giàu sulfur, nhiều loài động vật sống ký sinh chứa các sinh vật đơn bào hóa tự dưỡng, lưu trữ các hợp chất sulfur như một nguồn năng lượng, có khả năng làm cho các loài chủ trở nên độc với các sinh vật săn mồi. Chim nước ăn động vật thân mềm Calidris canutus canutus là một loài chim sống ở các bãi bùn của Banc d’Arguin vào mùa đông, nơi loài nhuyễn thể phổ biến nhất là Loripes orbiculatus, nơi chứa vi khuẩn oxy hóa sulfide. Trong hệ sinh thái này, chúng tôi đã nghiên cứu tác động tiềm năng của lưu huỳnh đối với tốc độ tiêu thụ của chim đỏ bằng cách cho chúng ăn Loripes với các hàm lượng lưu huỳnh khác nhau trong điều kiện nuôi nhốt. Để điều chỉnh độ độc, chúng tôi đã bỏ đói Loripes trong 10 ngày bằng cách loại bỏ nguồn năng lượng sulfide của sinh vật cộng sinh của chúng. Như dự đoán, chúng tôi đã tìm thấy nồng độ lưu huỳnh thấp hơn trong Loripes bị bỏ đói. Chúng tôi cũng đã đưa vào sự biến thiên tự nhiên về nồng độ lưu huỳnh bằng cách cung cấp Loripes được thu thập ở hai địa điểm khác nhau. Trong cả hai trường hợp, mức lưu huỳnh thấp hơn trong Loripes dẫn đến tỷ lệ tiêu thụ cao hơn ở chim đỏ. Qua thời gian, chim đỏ đã tăng tốc độ thu nhận Loripes của chúng, cho thấy khả năng điều chỉnh để tăng cường thu nhận lưu huỳnh.
Từ khóa
#lưu huỳnh #chim nước #nhuyễn thể #tốc độ tiêu thụ #sinh vật cộng sinhTài liệu tham khảo
Ahmedou Salem MV, van der Geest M, Piersma T, Saoud Y, van Gils JA (2014) Seasonal changes in mollusc abundance in a tropical intertidal ecosystem, Banc d’Arguin (Mauritania): testing the ‘depletion by shorebirds’ hypothesis. Estuar Coast Shelf Sci 136:26–34
Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48
Belovsky GE (1984) Herbivore optimal foraging: a comparative test of three models. Am Nat 124:97–115
Berdy J (2005) Bioactive microbial metabolites. J Antibiot 58:1–26
Berenbaum MR (1995) The chemistry of defense: theory and practice. Proc Natl Acad Sci USA 92:2–8
Blakey R, Zharikov Y, A. Skilleter G, (2006) Lack of an osmotic constraint on intake rate of the eastern curlew Numenius madagascariensis. J Avian Biol 37:299–305
Bloxham L, Bateson M, Bedford T, Brilot B, Nettle D (2014) The memory of hunger: developmental plasticity of dietary selectivity in the European starling, Sturnus vulgaris. Anim Behav 91:33–40
Burnham KP, Anderson DR (2002) A practical information-theoretic approach: Model selection and multimodel inference, 2nd edn. Springer-Verlag, New-York
Cardini U et al (2019) Chemosymbiotic bivalves contribute to the nitrogen budget of seagrass ecosystems. ISME J 13:3131–3134
Cary S, Vetter R, Felbeck H (1989) Habitat characterization and nutritional strategies of the endosymbiont-bearing bivalve Lucinoma aequizonata. Mar Ecol Prog Ser 55:31–45
Ceja-Navarro JA et al (2015) Gut microbiota mediate caffeine detoxification in the primary insect pest of coffee. Nat Commun 6:7618
Charnov EL (1976) Optimal foraging: attack strategy of a mantid. Am Nat 110:141–151
Clay K (2014) Defensive symbiosis: a microbial perspective. Funct Ecol 28:293–298
Cooper CE, Brown GC (2008) The inhibition of mitochondrial cytochrome oxidase by the gases carbon monoxide, nitric oxide, hydrogen cyanide and hydrogen sulfide: chemical mechanism and physiological significance. J Bioenerg Biomembr 40:533–539
Dando P, Southward A, Southward E (1986) Chemoautotrophic symbionts in the gills of the bivalve mollusc Lucinoma borealis and the sediment chemistry of its habitat. Proc Royal Soc London Ser B Biol Sci 227:227–247
Dekinga A, Piersma T (1993) Reconstructing diet composition on the basis of faeces in a mollusc-eating wader, the knot Calidris canutus. Bird Study 40:144–156
Dietz MW, Dekinga A, Piersma T, Verhulst S (1999) Estimating organ size in small migrating shorebirds with ultrasonography: an intercalibration exercise. Physiol Biochem Zool 72:28–37
Dubilier N, Bergin C, Lott C (2008) Symbiotic diversity in marine animals: the art of harnessing chemosynthesis. Nat Rev Microbiol 6:725–740
Elisabeth NH et al (2014) Comparative modifications in bacterial gill-endosymbiotic populations of the two bivalves Codakia orbiculata and Lucina pensylvanica during bacterial loss and reacquisition. FEMS Microbiol Ecol 89:646–658
Felbeck H, Somero GN (1982) Primary production in deep-sea hydrothermal vent organisms: roles of sulfide-oxidizing bacteria. Trends Biochem Sci 7:201–204
Flórez LV, Biedermann PH, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936
Freeland WJ, Janzen DH (1974) Strategies in herbivory by mammals: the role of plant secondary compounds. Am Nat 108:269–289
Goodman LA (1960) On the exact variance of products. J Am Stat Assoc 55:708–713
Gutiérrez JS (2014) Living in environments with contrasting salinities: a review of physiological and behavioural responses in waterbirds. Ardeola 61:233–256
Gutiérrez JS et al (2012) Functional ecology of saltglands in shorebirds: flexible responses to variable environmental conditions. Funct Ecol 26:236–244
Gutiérrez JS, Soriano-Redondo A, Dekinga A, Villegas A, Masero JA, Piersma T (2015) How salinity and temperature combine to affect physiological state and performance in Red Knots with contrasting non-breeding environments. Oecologia 178:1077–1091
Herry A, Diouris M, Le Pennec M (1989) Chemoautotrophic symbionts and translocation of fixed carbon from bacteria to host tissues in the littoral bivalve Loripes lucinalis (Lucinidae). Mar Biol 101:305–312
Hirakawa H (1995) Diet optimization with a nutrient or toxin constraint. Theor Popul Biol 47:331–346
Holling CS (1959) Some characteristics of simple types of predation and parasitism. Can Entomol 91:385–398
Holling CS (1966) The functional response of invertebrate predators to prey density. MemEntomol Soc Canada 98:5–86
Honkoop PJ, Berghuis EM, Holthuijsen S, Lavaleye MS, Piersma T (2008) Molluscan assemblages of seagrass-covered and bare intertidal flats on the Banc d’Arguin, Mauritania, in relation to characteristics of sediment and organic matter. J Sea Res 60:255–263
Iason G (2005) The role of plant secondary metabolites in mammalian herbivory: ecological perspectives. Proc Nutr Soc 64:123–131
Jeschke JM, Kopp M, Tollrian R (2002) Predator functional responses: discriminating between handling and digesting prey. Ecol Monogr 72:95–112
Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulphate reduction. Nature 296:643
Jørgensen BB, Findlay AJ, Pellerin A (2019) The biogeochemical sulfur cycle of marine sediments. Front Microbiol 10:849
Kandylis K (1984) Toxicology of sulfur in ruminants. J Dairy Sci 67:2179–2187
Kicklighter CE, Fisher C, Hay ME (2004) Chemical defense of hydrothermal vent and hydrocarbon seep organisms: a preliminary assessment using shallow-water consumers. Mar Ecol Prog Ser 275:11–19
Kikuchi Y, Hayatsu M, Hosokawa T, Nagayama A, Tago K, Fukatsu T (2012) Symbiont-mediated insecticide resistance. Proc Natl Acad Sci USA 109:8618–8622
Kohl KD, Weiss RB, Cox J, Dale C, Denise Dearing M (2014) Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol Lett 17:1238–1246
Larkum AW, Orth RJ, Duarte CM (2006) Seagrasses: biology, ecologyand conservation. Phycologia 45:5
Lebata JHL (2000) Elemental sulfur in the gills of the mangrove mud clam Anodontia edentula (Family Lucinidae). J Shellfish Res 19:241–245
Lechaire J-P, Frébourg G, Gaill F, Gros O (2008) In situ characterization of sulphur in gill-endosymbionts of the shallow water lucinid Codakia orbicularis (Linné, 1758) by high-pressure cryofixation and EFTEM microanalysis. Mar Biol 154:693–700
Leyrer J, Spaans B, Camara M, Piersma T (2006) Small home ranges and high site fidelity in red knots (Calidris c. canutus) wintering on the Banc d’Arguin. Mauritania J Ornithol 147:376–384
Lindquist N, Hay ME (1995) Can small rare prey be chemically defended? The case for marine larvae. Ecology 76:1347–1358
Luckner M (2013) Secondary metabolism in microorganisms, plants and animals. Springer Science & Business Media
Marbà N, Holmer M, Gacia E, Barron C (2007) Seagrass beds and coastal biogeochemistry. Seagrasses: biology, ecology and conservation. Springer, pp 135–157
Mazerolle MJ (2017) Package ‘AICcmodavg’. R package
O’Brien J, Wright GD (2011) An ecological perspective of microbial secondary metabolism. Curr Opin Biotechnol 22:552–558
Onrust J, De Fouw J, Oudman T, Van Der Geest M, Piersma T, Van Gils JA (2013) Red Knot diet reconstruction revisited: context dependence revealed by experiments at Banc d’Arguin, Mauritania. Bird Study 60:298–307
Oudman T, Onrust J, de Fouw J, Spaans B, Piersma T, van Gils JA (2014) Digestive capacity and toxicity cause mixed diets in red knots that maximize energy intake rate. Am Nat 183:650–659
Oudman T, Hin V, Dekinga A, van Gils JA (2015) The effect of digestive capacity on the intake rate of toxic and non-toxic prey in an ecological context. PLoS One 10:e0136144
Oudman T et al (2018) Resource landscapes explain contrasting patterns of aggregation and site fidelity by red knots at two wintering sites. Mov Ecol 6:1–12
Oudman T (2017) Red knot habits: An optimal foraging perspective on intertidal life at Banc d’Arguin, Mauritania
Petersen JM et al (2016) Chemosynthetic symbionts of marine invertebrate animals are capable of nitrogen fixation. Nat Microbiol 2:1–11
Piersma T (2007) Using the power of comparison to explain habitat use and migration strategies of shorebirds worldwide. J Ornithol 148:45–59
Piersma T et al (2005) Fuel storage rates before northward flights in Red Knots worldwide: Facing the severest ecological constraint in tropical intertidal environments? Birds of Two Worlds: the ecology and evolution of migration. Johns Hopkins University Press, Baltimore, Maryland, USA, pp 262–273
Ping L et al (2007) A novel Dps-type protein from insect gut bacteria catalyses hydrolysis and synthesis of N-acyl amino acids. Environ Microbiol 9:1572–1583
Roques C et al (2020) A trade-off between mucocytes and bacteriocytes in Loripes orbiculatus gills (Bivalvia, Lucinidae): a mixotrophic adaptation to seasonality and reproductive status in a symbiotic species? Mar Biol 167:1–16
Rossi F et al (2013) Spatial distribution and nutritional requirements of the endosymbiont-bearing bivalve Loripes lacteus (sensu Poli, 1791) in a Mediterranean Nanozostera noltii (Hornemann) meadow. J Exp Mar Biol Ecol 440:108–115
Singer M, Bernays E, Carriere Y (2002) The interplay between nutrient balancing and toxin dilution in foraging by a generalist insect herbivore. Anim Behav 64:629–643
Sogin EM, Leisch N, Dubilier N (2020) Chemosynthetic symbioses. Curr Biol 30:R1137–R1142
Staaland H (1967) Anatomical and physiological adaptations of the nasal glands in Charadriiformes birds. Comp Biochem Physiol 23:933–944
Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press
Taylor JD, Glover EA (2000) Functional anatomy, chemosymbiosis and evolution of the Lucinidae. Geol Soc London Spec Public 177:207–225
Turnbaugh PJ, Ridaura VK, Faith JJ, Rey FE, Knight R, Gordon JI (2009) The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci Translat Med 1:6ra14-16ra14
van der Geest M, van Gils JA, van der Meer J, Olff H, Piersma T (2011) Suitability of calcein as an in situ growth marker in burrowing bivalves. J Exp Mar Biol Ecol 399:1–7
van der Geest M, Sall AA, Ely SO, Nauta RW, van Gils JA, Piersma T (2014) Nutritional and reproductive strategies in a chemosymbiotic bivalve living in a tropical intertidal seagrass bed. Mar Ecol Prog Ser 501:113–126
van der Geest M, van der Heide T, Holmer M, de Wit R (2020) First field-based evidence that the seagrass-lucinid mutualism can mitigate sulfide stress in seagrasses. Front Mar Sci 7:11
van der Heide T et al (2012) A three-stage symbiosis forms the foundation of seagrass ecosystems. Science 336:1432–1434
van Gils JA, Piersma T, Dekinga A, Dietz MW (2003) Cost-benefit analysis of mollusc-eating in a shorebird II. Optimizing gizzard size in the face of seasonal demands. J Exp Biol 206:3369–3380
van Gils JA et al (2005) Digestive bottleneck affects foraging decisions in red knots Calidris canutus. I. Prey choice. J Anim Ecol 74:105–119
van Gils JA, Piersma T, Dekinga A, Battley PF (2006) Modelling phenotypic flexibility: an optimality analysis of gizzard size in red knots Calidris canutus. Ardea 94:409
van Gils JA, van der Geest M, Jansen EJ, Govers LL, de Fouw J, Piersma T (2012) Trophic cascade induced by molluscivore predator alters pore-water biogeochemistry via competitive release of prey. Ecology 93:1143–1152
van Gils JA et al (2013) Toxin constraint explains diet choice, survival and population dynamics in a molluscivore shorebird. Proc Royal Soc B 280:20130861
van Gils JA, van der Geest M, De Meulenaer B, Gillis H, Piersma T, Folmer EO (2015) Moving on with foraging theory: incorporating movement decisions into the functional response of a gregarious shorebird. J Anim Ecol 84:554–564
van Gils JA et al (2016) Body shrinkage due to Arctic warming reduces red knot fitness in tropical wintering range. Science 352:819–821
Verboven N, Piersma T (1995) Is the evaporative water loss of Knot Calidris canutus higher in tropical than in temperate climates? Ibis 137:308–316
Verlinden C, Wiley RH (1989) The constraints of digestive rate: an alternative model of diet selection. Evol Ecol 3:264–272
Vetter R, Fry B (1998) Sulfur contents and sulfur-isotope compositions of thiotrophic symbioses in bivalve molluscs and vestimentiferan worms. Mar Biol 132:453–460
White JF Jr, Torres MS (2009) Defensive mutualism in microbial symbiosis. CRC Press
Wolff W, Smit C (1990) The Banc d’Arguin as an environment for coastal waders. Ardea 78:17–38
Zhang C, Zhang M, Pang X, Zhao Y, Wang L, Zhao L (2012) Structural resilience of the gut microbiota in adult mice under high-fat dietary perturbations. ISME J 6:1848–1857