Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries

Materials Today Energy - Tập 27 - Trang 101000 - 2022
Rahul Pai1, Varun Natu2, Maxim Sokol3, Michael Carey2, Thomas Greszler4, Michel W. Barsoum2, Vibha Kalra1
1Department of Chemical and Biological Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
2Department of Material Science Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
3Department of Material Science and Engineering, Tel Aviv University, Ramat Aviv 6997801, Tel Aviv, Israel
4Space and Defense Division, Saft America, Cockeysville, MD, USA

Tài liệu tham khảo

Padhi, 1997, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, 144, 1188, 10.1149/1.1837571 Li, 2018, 30 Years of lithium-ion batteries, Adv. Mater., 30, 1800561, 10.1002/adma.201800561 Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191 Manthiram, 2014, Rechargeable lithium-sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v Chung, 2019, Current status and future prospects of metal-sulfur batteries, Adv. Mater., 31, 1901125, 10.1002/adma.201901125 Wild, 2015, Lithium sulfur batteries, a mechanistic review, Energy Environ. Sci., 8, 3477, 10.1039/C5EE01388G Yin, 2013, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem., Int. Ed. Engl., 52, 13186, 10.1002/anie.201304762 Xin, 2014, A high-energy room-temperature sodium-sulfur battery, Adv. Mater., 26, 1261, 10.1002/adma.201304126 Wei, 2016, A stable room-temperature sodium-sulfur battery, Nat. Commun., 7, 11722, 10.1038/ncomms11722 Ding, 2020, Review of emerging potassium-sulfur batteries, Adv. Mater., 32, 1908007, 10.1002/adma.201908007 Wang, 2018, Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries, Adv. Funct. Mater., 28 Flamme, 2017, Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties, Green Chem., 19, 1828, 10.1039/C7GC00252A Cleaver, 2017, Perspective—commercializing lithium sulfur batteries: are we doing the right research?, J. Electrochem. Soc., 165, A6029, 10.1149/2.0071801jes Zhang, 2013, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions, J. Power Sources, 231, 153, 10.1016/j.jpowsour.2012.12.102 Yim, 2013, Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries, Electrochim. Acta, 107, 454, 10.1016/j.electacta.2013.06.039 Helen, 2018, Insight into sulfur confined in ultramicroporous carbon, ACS Omega, 3, 11290, 10.1021/acsomega.8b01681 Maria Joseph, 2021, Perspective on ultramicroporous carbon as sulphur host for Li–S batteries, J. Energy Chem., 59, 242, 10.1016/j.jechem.2020.11.001 Markevich, 2016, Review—on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: is the existence of small sulfur molecules necessary?, J. Electrochem. Soc., 164, A6244, 10.1149/2.0391701jes Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306 Verger, 2019, MXenes: an introduction of their synthesis, select properties, and applications, Trends Chem, 1, 656, 10.1016/j.trechm.2019.04.006 Sokol, 2019, On the chemical diversity of the MAX phases, Trends Chem, 1, 210, 10.1016/j.trechm.2019.02.016 Carey, 2020, Dispersion and stabilization of alkylated 2D MXene in nonpolar solvents and their pseudocapacitive behavior, Cell Rep. Phys. Sci., 1, 100042, 10.1016/j.xcrp.2020.100042 Hantanasirisakul, 2016, Fabrication of Ti3C2TxMXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mat., 2, 1600050, 10.1002/aelm.201600050 Ghidiu, 2014, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970 Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98 Dillon, 2016, Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater., 26, 4162, 10.1002/adfm.201600357 Hantanasirisakul, 2018, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater., 30, 1804779, 10.1002/adma.201804779 Kamysbayev, 2020, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes, Science, 369, 979, 10.1126/science.aba8311 Han, 2019, Two-dimensional materials for lithium/sodium-ion capacitors, Mater, Today Energy, 11, 30, 10.1016/j.mtener.2018.10.013 Etman, 2021, Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors, Mater, Today Energy, 22, 100878, 10.1016/j.mtener.2021.100878 Ghidiu, 2016, Ion-exchange and cation solvation reactions in Ti3C2MXene, Chem. Mater., 28, 3507, 10.1021/acs.chemmater.6b01275 Liu, 2021, Regulating interlayer spacing with pillar and strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ion storage, Mater. Today Energy, 22, 100832, 10.1016/j.mtener.2021.100832 Ruan, 2021, Interface coupling in FeOOH/MXene heterojunction for highly reversible lithium-ion storage, Mater. Today Energy, 19, 100584, 10.1016/j.mtener.2020.100584 Zhao, 2021, Status and prospects of MXene-based lithium–sulfur batteries, Adv. Funct. Mater., 31, 2100457, 10.1002/adfm.202100457 Pai, 2021, Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries, Cell Reports Physical Science, 2, 100480, 10.1016/j.xcrp.2021.100480 Hueso, 2013, High temperature sodium batteries: status, challenges and future trends, Energy Environ. Sci., 6, 734, 10.1039/c3ee24086j Kumar, 2017, Progress and prospects of sodium-sulfur batteries: a review, Solid State Ionics, 312, 8, 10.1016/j.ssi.2017.10.004 Zhao, 2020, Potassium-sulfur batteries: status and perspectives, EcoMat, 2, 12038, 10.1002/eom2.12038 Xue, 2018, Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery, J. Mater. Sci., 53, 11062, 10.1007/s10853-018-2370-9 Naguib, 2012, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun., 16, 61, 10.1016/j.elecom.2012.01.002 Kurra, 2018, Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors, ACS Energy Lett., 3, 2094, 10.1021/acsenergylett.8b01062 Fu, 2016, Solid state lithiation-delithiation of sulphur in sub-nano confinement: a new concept for designing lithium-sulphur batteries, Chem. Sci., 7, 1224, 10.1039/C5SC03419A Xin, 2012, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 134, 18510, 10.1021/ja308170k Yan, 2020, A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries, Adv. Mater., 32, 1906700, 10.1002/adma.201906700 Kajiyama, 2016, Sodium-ion intercalation mechanism in MXene nanosheets, ACS Nano, 10, 3334, 10.1021/acsnano.5b06958 Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci., 3, 1500213, 10.1002/advs.201500213 Lee, 2020, A review on recent approaches for designing the SEI layer on sodium metal anodes, Mater. Adv., 1, 3143, 10.1039/D0MA00695E Xiong, 2019, Room-temperature potassium-sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes, ACS Nano, 13, 2536