Sulfur confined MXene hosts enabling the use of carbonate-based electrolytes in alkali metal (Li/Na/K)-sulfur batteries
Tài liệu tham khảo
Padhi, 1997, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc, 144, 1188, 10.1149/1.1837571
Li, 2018, 30 Years of lithium-ion batteries, Adv. Mater., 30, 1800561, 10.1002/adma.201800561
Bruce, 2011, Li-O2 and Li-S batteries with high energy storage, Nat. Mater., 11, 19, 10.1038/nmat3191
Manthiram, 2014, Rechargeable lithium-sulfur batteries, Chem. Rev., 114, 11751, 10.1021/cr500062v
Chung, 2019, Current status and future prospects of metal-sulfur batteries, Adv. Mater., 31, 1901125, 10.1002/adma.201901125
Wild, 2015, Lithium sulfur batteries, a mechanistic review, Energy Environ. Sci., 8, 3477, 10.1039/C5EE01388G
Yin, 2013, Lithium-sulfur batteries: electrochemistry, materials, and prospects, Angew. Chem., Int. Ed. Engl., 52, 13186, 10.1002/anie.201304762
Xin, 2014, A high-energy room-temperature sodium-sulfur battery, Adv. Mater., 26, 1261, 10.1002/adma.201304126
Wei, 2016, A stable room-temperature sodium-sulfur battery, Nat. Commun., 7, 11722, 10.1038/ncomms11722
Ding, 2020, Review of emerging potassium-sulfur batteries, Adv. Mater., 32, 1908007, 10.1002/adma.201908007
Wang, 2018, Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries, Adv. Funct. Mater., 28
Flamme, 2017, Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties, Green Chem., 19, 1828, 10.1039/C7GC00252A
Cleaver, 2017, Perspective—commercializing lithium sulfur batteries: are we doing the right research?, J. Electrochem. Soc., 165, A6029, 10.1149/2.0071801jes
Zhang, 2013, Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions, J. Power Sources, 231, 153, 10.1016/j.jpowsour.2012.12.102
Yim, 2013, Effect of chemical reactivity of polysulfide toward carbonate-based electrolyte on the electrochemical performance of Li–S batteries, Electrochim. Acta, 107, 454, 10.1016/j.electacta.2013.06.039
Helen, 2018, Insight into sulfur confined in ultramicroporous carbon, ACS Omega, 3, 11290, 10.1021/acsomega.8b01681
Maria Joseph, 2021, Perspective on ultramicroporous carbon as sulphur host for Li–S batteries, J. Energy Chem., 59, 242, 10.1016/j.jechem.2020.11.001
Markevich, 2016, Review—on the mechanism of quasi-solid-state lithiation of sulfur encapsulated in microporous carbons: is the existence of small sulfur molecules necessary?, J. Electrochem. Soc., 164, A6244, 10.1149/2.0391701jes
Naguib, 2011, Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2, Adv. Mater., 23, 4248, 10.1002/adma.201102306
Verger, 2019, MXenes: an introduction of their synthesis, select properties, and applications, Trends Chem, 1, 656, 10.1016/j.trechm.2019.04.006
Sokol, 2019, On the chemical diversity of the MAX phases, Trends Chem, 1, 210, 10.1016/j.trechm.2019.02.016
Carey, 2020, Dispersion and stabilization of alkylated 2D MXene in nonpolar solvents and their pseudocapacitive behavior, Cell Rep. Phys. Sci., 1, 100042, 10.1016/j.xcrp.2020.100042
Hantanasirisakul, 2016, Fabrication of Ti3C2TxMXene transparent thin films with tunable optoelectronic properties, Adv. Electron. Mat., 2, 1600050, 10.1002/aelm.201600050
Ghidiu, 2014, Conductive two-dimensional titanium carbide 'clay' with high volumetric capacitance, Nature, 516, 78, 10.1038/nature13970
Anasori, 2017, 2D metal carbides and nitrides (MXenes) for energy storage, Nat. Rev. Mater., 2, 16098, 10.1038/natrevmats.2016.98
Dillon, 2016, Highly conductive optical quality solution-processed films of 2D titanium carbide, Adv. Funct. Mater., 26, 4162, 10.1002/adfm.201600357
Hantanasirisakul, 2018, Electronic and optical properties of 2D transition metal carbides and nitrides (MXenes), Adv. Mater., 30, 1804779, 10.1002/adma.201804779
Kamysbayev, 2020, Covalent surface modifications and superconductivity of two-dimensional metal carbide MXenes, Science, 369, 979, 10.1126/science.aba8311
Han, 2019, Two-dimensional materials for lithium/sodium-ion capacitors, Mater, Today Energy, 11, 30, 10.1016/j.mtener.2018.10.013
Etman, 2021, Mo1.33CTz–Ti3C2Tz mixed MXene freestanding films for zinc-ion hybrid supercapacitors, Mater, Today Energy, 22, 100878, 10.1016/j.mtener.2021.100878
Ghidiu, 2016, Ion-exchange and cation solvation reactions in Ti3C2MXene, Chem. Mater., 28, 3507, 10.1021/acs.chemmater.6b01275
Liu, 2021, Regulating interlayer spacing with pillar and strain structures in Ti3C2 MXene layers by molecular welding for superior alkali metal ion storage, Mater. Today Energy, 22, 100832, 10.1016/j.mtener.2021.100832
Ruan, 2021, Interface coupling in FeOOH/MXene heterojunction for highly reversible lithium-ion storage, Mater. Today Energy, 19, 100584, 10.1016/j.mtener.2020.100584
Zhao, 2021, Status and prospects of MXene-based lithium–sulfur batteries, Adv. Funct. Mater., 31, 2100457, 10.1002/adfm.202100457
Pai, 2021, Tuning functional two-dimensional MXene nanosheets to enable efficient sulfur utilization in lithium-sulfur batteries, Cell Reports Physical Science, 2, 100480, 10.1016/j.xcrp.2021.100480
Hueso, 2013, High temperature sodium batteries: status, challenges and future trends, Energy Environ. Sci., 6, 734, 10.1039/c3ee24086j
Kumar, 2017, Progress and prospects of sodium-sulfur batteries: a review, Solid State Ionics, 312, 8, 10.1016/j.ssi.2017.10.004
Zhao, 2020, Potassium-sulfur batteries: status and perspectives, EcoMat, 2, 12038, 10.1002/eom2.12038
Xue, 2018, Mangosteen peel-derived porous carbon: synthesis and its application in the sulfur cathode for lithium sulfur battery, J. Mater. Sci., 53, 11062, 10.1007/s10853-018-2370-9
Naguib, 2012, MXene: a promising transition metal carbide anode for lithium-ion batteries, Electrochem. Commun., 16, 61, 10.1016/j.elecom.2012.01.002
Kurra, 2018, Bistacked titanium carbide (MXene) anodes for hybrid sodium-ion capacitors, ACS Energy Lett., 3, 2094, 10.1021/acsenergylett.8b01062
Fu, 2016, Solid state lithiation-delithiation of sulphur in sub-nano confinement: a new concept for designing lithium-sulphur batteries, Chem. Sci., 7, 1224, 10.1039/C5SC03419A
Xin, 2012, Smaller sulfur molecules promise better lithium-sulfur batteries, J. Am. Chem. Soc., 134, 18510, 10.1021/ja308170k
Yan, 2020, A high-kinetics sulfur cathode with a highly efficient mechanism for superior room-temperature Na-S batteries, Adv. Mater., 32, 1906700, 10.1002/adma.201906700
Kajiyama, 2016, Sodium-ion intercalation mechanism in MXene nanosheets, ACS Nano, 10, 3334, 10.1021/acsnano.5b06958
Cheng, 2016, A review of solid electrolyte interphases on lithium metal anode, Adv. Sci., 3, 1500213, 10.1002/advs.201500213
Lee, 2020, A review on recent approaches for designing the SEI layer on sodium metal anodes, Mater. Adv., 1, 3143, 10.1039/D0MA00695E
Xiong, 2019, Room-temperature potassium-sulfur batteries enabled by microporous carbon stabilized small-molecule sulfur cathodes, ACS Nano, 13, 2536