Sulfur‐Induced Interface Engineering of Hybrid NiCo2O4@NiMo2S4 Structure for Overall Water Splitting and Flexible Hybrid Energy Storage

Advanced Materials Interfaces - Tập 6 Số 21 - 2019
Depeng Zhao1, Meizhen Dai1, Hengqi Liu1, Kunfeng Chen2, Xiaofei Zhu1, Dongfeng Xue2, Xiang Wu1, Jinping Liu3
1School of Materials Science and Engineering, Shenyang University of technology, Shenyang 110870, P.R. China
2State Key Laboratory of Rare Earth Resource Utilization Changchun Institute of Applied Chemistry Chinese Academy of Science Changchun 130022 P. R. China
3School of Chemistry, Chemical Engineering and Life Science and State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070 P. R. China

Tóm tắt

AbstractTo rationally design hybrid structures with unique surface/interface features is very significant due to their multi‐functionalization in energy storage and conversion systems. Generally, single metal oxide as electrode material is still unsatisfactory for its slow electron transportation and inevitable structural collapse. To address these issues, sulfur element‐induced interface‐tailoring hybrid NiCo2O4@NiMo2S4 nanosheet structures with high electrochemical activity are reported through a simple vulcanization process of NiCo2O4@NiMoO4 nanosheets. The hybrid NiCo2O4@NiMo2S4 structure presents excellent hydrogen evolution reaction performance with the overpotential of 159 mV at 10 mA cm−2 and low Tafel slope of 53.1 mV dec−1, and overall water splitting abilities with low cell voltage of 1.63 V at 50 mA cm−2 and stability for 13 h. As supercapacitor electrode materials, the hybrid structures exhibit a specific capacitance 519 C g−1 at 1 A g−1, which is higher than that of hybrid NiCo2O4@NiMoO4 nanosheets (420 C g−1). The asymmetric device delivers an energy density of 30.73 Wh kg−1 at a power density of 374.9 W kg−1.

Từ khóa


Tài liệu tham khảo

10.1126/science.1211934

10.1002/adma.201802396

10.1002/admi.201700219

10.1002/admi.201700004

10.1039/C8EE00076J

10.1002/admi.201900586

10.1002/adfm.201801332

10.1126/science.1212858

10.1002/smll.201700979

10.1039/C6CS00328A

10.1016/j.nanoen.2019.05.036

10.1021/ja503372r

10.1016/j.nanoen.2014.11.021

10.1038/ncomms12647

10.1016/j.nanoen.2017.01.056

10.1002/asia.201801710

10.1002/admi.201700481

10.1039/C8TA10162K

10.1021/acsami.6b13075

10.1016/j.nanoen.2017.10.058

10.1002/eem2.12028

10.1016/j.mtener.2017.06.007

10.1016/j.nanoen.2014.09.002

10.1021/nl400378j

10.1002/adfm.201200994

10.1039/C7QI00391A

10.1016/j.nanoen.2018.12.066

10.1002/celc.201600843

10.1021/ja405351s

10.1039/C8QI00170G

10.1002/advs.201500426

10.1016/j.nanoen.2019.01.011

10.1002/adma.201703311

10.1039/c2cc31570j

10.1021/nn503814y

10.1039/c3cc46034g

10.1021/acsami.7b16389

10.1002/smll.201800742

10.1002/adma.201704609

10.1016/j.cplett.2017.02.074

10.1021/acscatal.8b00949

10.1016/j.apcatb.2019.01.035

10.1016/j.nanoen.2019.02.050

10.1021/jacs.8b01548

10.1021/am501988s

10.1039/C5EE03772G

10.1002/adma.201304148

10.1021/am500060m

10.1039/C5TA03469H

10.1016/j.jallcom.2017.05.282

10.1039/C8DT00750K

10.1016/j.electacta.2017.08.102

10.1016/j.cej.2017.04.115

10.1039/C8NJ00935J

10.1007/s12274-017-1433-6

10.1039/C7CP00990A

10.1016/j.ensm.2018.11.024

10.1016/j.nanoen.2018.03.002

10.1016/j.cej.2017.01.010

10.1039/C5TA02432C

10.1002/adfm.201102796

10.1021/am402127u

10.1016/j.jpowsour.2013.12.092

10.1021/acs.cgd.8b01904