Các chất xúc tác silica mesoporous đã được chức năng hóa sulfonic acid với hình thái khác nhau cho quá trình sản xuất biodiesel

Springer Science and Business Media LLC - Tập 16 - Trang 1198-1210 - 2022
Vinayak Hegde1, Parimal Pandit1, Pranita Rananaware1, Varsha P. Brahmkhatri1
1Centre for Nano and Material Sciences, Jain University, Bengaluru, India

Tóm tắt

Các chất xúc tác rắn trên cơ sở silica mesoporous chức năng hóa bằng axit sulfonic với các hình thái khác nhau đã được thiết kế và chế tạo. Các vật liệu tổng hợp đã được đặc trưng bằng nhiều kỹ thuật vật lý - hóa học và quang phổ như kính hiển vi điện tử quét - quang phổ tia X phân tán năng lượng, quang phổ hồng ngoại biến đổi Fourier, diện tích bề mặt Brunauer-Emmett-Teller, phân tích nhiệt trọng lượng và độ axit n-butylamine. Hình dạng của các hạt xúc tác đóng vai trò quan trọng trong hoạt tính của nó. Các chất xúc tác silica mesoporous chức năng hóa axit sulfonic có hình dạng cầu và hình lập phương đã được đánh giá về hoạt tính xúc tác trong việc sản xuất biodiesel. Phản ứng sản xuất biodiesel xúc tác qua sự este hóa axit béo tự do, axit oleic với methanol đã được nghiên cứu. Ảnh hưởng của các tham số phản ứng khác nhau như nồng độ xúc tác, tỷ lệ mol axit/alkohol, lượng xúc tác, nhiệt độ phản ứng và thời gian phản ứng đối với hoạt tính xúc tác đã được nghiên cứu để tối ưu hóa điều kiện cho sự chuyển đổi tối đa. Silica mesoporous hình lập phương đã được sulfon hóa đã cho thấy hoạt tính tốt hơn so với các chất xúc tác silica hình cầu. Ngoài ra, chất xúc tác đã được tái sinh và sử dụng lại đến ba chu kỳ mà không có sự mất mát đáng kể về hoạt tính. Các chất xúc tác hiện tại cho thấy hiệu suất vượt trội trong việc sản xuất biodiesel và có thể được sử dụng cho nhiều nguồn nguyên liệu biodiesel phong phú axit béo tự do.

Từ khóa

#silica mesoporous #chất xúc tác #axit sulfonic #sản xuất biodiesel #hình thái

Tài liệu tham khảo

Yang S, Yang Y, Kankala R K, Li B. Sustainability assessment of synfuels from biomass or coal: an insight on the economic and ecological burdens. Renewable Energy, 2018, 118: 870–878 Demirbas A. Importance of biodiesel as transportation fuel. Energy Policy, 2007, 35(9): 4661–4670 Demirbas A. Progress and recent trends in biodiesel fuels. Energy Conversion and Management, 2009, 50(1): 14–34 Chen B, Wang J, He T, Jie F, Chen B. Impact of biodiesel on engine oil quality: role of methyl oleate and performance of sulfonate detergent additive. Fuel, 2019, 244: 454–460 Navaneeth P V, Suraj C K, Mehta P S, Anand K. Predicting the effect of biodiesel composition on the performance and emission of a compression ignition engine using a phenomenological model. Fuel, 2021, 293: 120453 Jothiramalingam R, Wang M K. Review of recent developments in solid acid, base, and enzyme catalysts (heterogeneous) for biodiesel production via transesterification. Industrial & Engineering Chemistry Research, 2009, 48(13): 6162–6172 Kondaiah A, Sesha Rao Y, Satishkumar, Kamitkar N D, Jafar Ali Ibrahim S, Chandradass J, Kannan T T M. Influence of blends of castor seed biodiesel and diesel on engine characteristics. Materials Today: Proceedings, 2021, 45: 7043–7049 Macario A, Giordano G, Onida B, Cocina D, Tagarelli A, Giuffrè A M. Biodiesel production process by homogeneous/heterogeneous catalytic system using an acid-base catalyst. Applied Catalysis A, General, 2010, 378(2): 160–168 Guo F, Peng Z G, Dai J Y, Xiu Z L. Calcined sodium silicate as solid base catalyst for biodiesel production. Fuel Processing Technology, 2010, 91(3): 322–328 Boon-anuwat N, Kiatkittipong W, Aiouache F, Assabumrungrat S. Process design of continuous biodiesel production by reactive distillation: comparison between homogeneous and heterogeneous catalysts. Chemical Engineering and Processing, 2015, 92: 33–44 Soltani S, Rashid U, Al-Resayes S I, Nehdi I A. Recent progress in synthesis and surface functionalization of mesoporous acidic heterogeneous catalysts for esterification of free fatty acid feedstocks: a review. Energy Conversion and Management, 2017, 141: 183–205 Tan X, Sudarsanam P, Tan J, Wang A, Zhang H, Li H, Yang S. Sulfonic acid-functionalized heterogeneous catalytic materials for efficient biodiesel production: a review. Journal of Environmental Chemical Engineering, 2021, 9(1): 104719 Patel A, Brahmkhatri V, Singh N. Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renewable Energy, 2013, 51: 227–233 Brahmkhatri V, Patel A. 12-Tungstophosphoric acid anchored to SBA-15: an efficient, environmentally benign reusable catalysts for biodiesel production by esterification of free fatty acids. Applied Catalysis A, General, 2011, 403(1): 161–172 Brahmkhatri V, Patel A. Biodiesel production by esterification of free fatty acids over 12-tungstophosphoric acid anchored to MCM-41. Industrial & Engineering Chemistry Research, 2011, 50(11): 6620–6628 Mohammadi Ziarani G, Lashgari N, Badiei A. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. Journal of Molecular Catalysis A Chemical, 2015, 397: 166–191 Wang P, Zhao Y, Liu J. Versatile design and synthesis of mesoporous sulfonic acid catalysts. Science Bulletin, 2018, 63(4): 252–266 Verma P, Kuwahara Y, Mori K, Raja R, Yamashita H. Functionalized mesoporous SBA-15 silica: recent trends and catalytic applications. Nanoscale, 2020, 12(21): 11333–11363 Costa J A S, de Jesus R A, Santos D O, Neris J B, Figueiredo R T, Paranhos C M. Synthesis, functionalization, and environmental application of silica-based mesoporous materials of the M41S and SBA-n families: a review. Journal of Environmental Chemical Engineering, 2021, 9(3): 105259 Hoang Thi T T, Cao V D, Nguyen T N Q, Hoang D T, Ngo V C, Nguyen D H. Functionalized mesoporous silica nanoparticles and biomedical applications. Materials Science and Engineering C, 2019, 99: 631–656 Kholafazad Kordasht H, Pazhuhi M, Pashazadeh-Panahi P, Hasanzadeh M, Shadjou N. Multifunctional aptasensors based on mesoporous silica nanoparticles as an efficient platform for bioanalytical applications: recent advances. Trends in Analytical Chemistry, 2020, 124: 115778 Gañán J, Morante-Zarcero S, Pérez-Quintanilla D, Sierra I. 2-Mercaptopyrimidine-functionalized mesostructured silicas to develop electrochemical sensors for a rapid control of scopolamine in tea and herbal tea infusions. Microchemical Journal, 2020, 157: 104877 Thushari I, Babel S. Sustainable utilization of waste palm oil and sulfonated carbon catalyst derived from coconut meal residue for biodiesel production. Bioresource Technology, 2018, 248: 199–203 Liu T, Li Z, Li W, Shi C, Wang Y. Preparation and characterization of biomass carbon-based solid acid catalyst for the esterification of oleic acid with methanol. Bioresource Technology, 2013, 133: 618–621 Rafiee E, Mirnezami F. Temperature regulated Brønsted acidic ionic liquid-catalyze esterification of oleic acid for biodiesel application. Journal of Molecular Structure, 2017, 1130: 296–302 Peixoto A F, Soliman M M A, Pinto T V, Silva S M, Costa P, Alegria E C B A, Freire C. Highly active organosulfonic aryl-silica nanoparticles as efficient catalysts for biomass derived biodiesel and fuel additives. Biomass and Bioenergy, 2021, 145: 105936 Zhang P, Wu H, Fan M, Sun W, Jiang P, Dong Y. Direct and postsynthesis of tin-incorporated SBA-15 functionalized with sulfonic acid for efficient biodiesel production. Fuel, 2019, 235: 426–432 Kasinathan P, Lang C, Gaigneaux E M, Jonas A M, Fernandes A E. Influence of site pairing in hydrophobic silica-supported sulfonic acid bifunctional catalysts. Langmuir, 2020, 36(46): 13743–13751 Viscardi R, Barbarossa V, Maggi R, Pancrazzi F. Effect of acidic MCM-41 mesoporous silica functionalized with sulfonic acid groups catalyst in conversion of methanol to dimethyl ether. Energy Reports, 2020, 6: 49–55 Tai Z, Isaacs M A, Parlett C M A, Lee A F, Wilson K. High activity magnetic core-mesoporous shell sulfonic acid silica nanoparticles for carboxylic acid esterification. Catalysis Communications, 2017, 92: 56–60 Usai E M, Sini M F, Meloni D, Solinas V, Salis A. Sulfonic acid-functionalized mesoporous silicas: microcalorimetric characterization and catalytic performance toward biodiesel synthesis. Microporous and Mesoporous Materials, 2013, 179: 54–62 Tran T T V, Obpirompoo M, Kongparakul S, Karnjanakom S, Reubroycharoen P, Guan G, Chanlek N, Samart C. Glycerol valorization through production of di-glyceryl butyl ether with sulfonic acid functionalized KIT-6 catalyst. Carbon Resources Conversion, 2020, 3: 182–189 Decarpigny C, Bleta R, Ponchel A, Monflier E. Oxidation of 2,5-diformfylfuran to 2,5-furandicarboxylic acid catalyzed by Candida antarctica lipase B immobilized in a cyclodextrin-templated mesoporous silica. The critical role of pore characteristics on the catalytic performance. Colloids and Surfaces. B, Biointerfaces, 2021, 200: 111606 Rahman S, Shah S, Santra C, Sen D, Sharma S, Pandey J K, Mazumder S, Chowdhury B. Controllable synthesis of niobium doped mesoporous silica materials with various morphologies and its activity for oxidative catalysis. Microporous and Mesoporous Materials, 2016, 226: 169–178 Patel A, Brahmkhatri V. Kinetic study of oleic acid esterification over 12-tungstophosphoric acid catalyst anchored to different mesoporous silica supports. Fuel Processing Technology, 2013, 113: 141–149 Wang X, Zhang Y, Luo W, Elzatahry A A, Cheng X, Alghamdi A, Abdullah A M, Deng Y, Zhao D. Synthesis of ordered mesoporous silica with tunable morphologies and pore sizes via a nonpolar solvent-assisted Stöber method. Chemistry of Materials, 2016, 28(7): 2356–2362 Ballistreri F P, Tomaselli G A, Toscano R M. Selective and mild oxidation of thiols to sulfonic acids by hydrogen peroxide catalyzed by methyltrioxorhenium. Tetrahedron Letters, 2008, 49(20): 3291–3293 Brunauer S, Deming L S, Deming W E, Teller E. On a theory of the van der Waals adsorption of gases. Journal of the American Chemical Society, 1940, 62(7): 1723–1732 Cano-Serrano E, Campos-Martin J M, Fierro J L G. Sulfonic acid-functionalized silica through quantitative oxidation of thiol groups. Chemical Communications, 2003, (2): 246–247 Kruk M, Jaroniec M, Sayari A J L. Application of large pore MCM-41 molecular sieves to improve pore size analysis using nitrogen adsorption measurements. Langmuir, 1997, 13(23): 6267–6273 Isaifan R J, Ntais S, Baranova E A. Particle size effect on catalytic activity of carbon-supported Pt nanoparticles for complete ethylene oxidation. Applied Catalysis A, General, 2013, 464–465: 87–94 Hasan Z, Jun J W, Jhung S H. Sulfonic acid-functionalized MIL-101 (Cr): an efficient catalyst for esterification of oleic acid and vapor-phase dehydration of butanol. Chemical Engineering Journal, 2015, 278: 265–271 Yu H, Niu S, Lu C, Li J, Yang Y. Sulfonated coal-based solid acid catalyst synthesis and esterification intensification under ultrasound irradiation. Fuel, 2017, 208: 101–110 Nongbe M C, Ekou T, Ekou L, Yao K B, Le Grognec E, Felpin F X. Biodiesel production from palm oil using sulfonated graphene catalyst. Renewable Energy, 2017, 106: 135–141 Niu S, Ning Y, Lu C, Han K, Yu H, Zhou Y. Esterification of oleic acid to produce biodiesel catalyzed by sulfonated activated carbon from bamboo. Energy Conversion and Management, 2018, 163: 59–65 Zhou Y, Ding H, Liu J, Parnas R S, Clearfield A, Xiao M, Meng Y, Sun L. Solid acid catalyst based on single-layer α-zirconium phosphate nanosheets for biodiesel production via esterification. Catalysts, 2018, 8(1): 1–17 Chen Y, Cao Y, Suo Y, Zheng G P, Guan X X, Zheng X C. Mesoporous solid acid catalysts of 12-tungstosilicic acid anchored to SBA-15: characterization and catalytic properties for esterification of oleic acid with methanol. Journal of the Taiwan Institute of Chemical Engineers, 2015, 51: 186–192 Yang H, Song H, Zhang H, Chen P, Zhao Z. Esterification of citric acid with n-butanol over zirconium sulfate supported on molecular sieves. Journal of Molecular Catalysis A Chemical, 2014, 381: 54–60