Sulfonamide as Photoinduced Hydrogen Atom Transfer Catalyst for Organophotoredox Hydrosilylation and Hydrogermylation of Activated Alkenes

Kalu Ram Bajya1, Manjeet Kumar2, Azaj Ansari2, Sermadurai Selvakumar1
1Department of Chemistry, Indian Institute of Technology Indore, Indore, 453552, Madhya Pradesh, India
2Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendergarh, 123031, Haryana, India

Tóm tắt

Abstract

Readily available, sterically, and electronically tunable sulfonamides have been developed as effective photoinduced hydrogen atom transfer (HAT) catalysts for selective Si−H functionalizations of a broad range of silanes. N‐centered radicals, catalytically generated from sulfonamides by photoredox catalyzed single‐electron oxidation, are the key intermediates that enable an effective HAT process for silyl radical generation to achieve hydrosilylation of activated alkenes. Additionally, this catalytic system can also be applied for the activation of Ge−H bond for hydrogermylation of activated alkenes through hydrogen atom transfer by sulfonamide derived nitrogen centered radical. The ability to generate silyl and germyl radical using this photochemical HAT process offers new avenue towards the sustainable synthesis of organosilicon and organogermanium compounds.

magnified image


Tài liệu tham khảo

For recent review see: 10.1039/c0cc05665k 10.1021/acs.oprd.5b00201 10.1021/acscatal.6b02374   10.1039/C0CS00010H 10.1021/acs.accounts.7b00059   10.1002/ps.2780280308 10.1021/op020206f   10.1021/jm4017625 10.1021/acs.chemrev.6b00122   10.1016/S1359-6446(03)02726-0 10.2174/138955706778560120 10.1021/jm3010114 10.4155/fmc-2016-0193 10.1021/acs.jmedchem.7b00718 For recent reviews see: 10.1002/cptc.201800110 10.1016/j.cclet.2020.09.058 10.1039/D1OB00082A 10.1002/ajoc.202000584 10.1039/D2QO01387H For selected examples: 10.1021/ar050089j 10.1021/ol300618j 10.1021/jacs.0c10899 10.1002/anie.202011738 10.1002/ange.202011738 10.1021/acscatal.1c02733 10.1021/acscatal.1c03824   10.1021/ja01561a054 B. D. Karstedt US3775452A 1973. For reviews see: 10.1039/C4RA17281G 10.1021/acscatal.5b02308 10.1021/acscatal.6b02990 10.1126/science.1214451 10.1021/jacs.5b08611 10.1021/jacs.5b11311 10.1002/anie.201601197 10.1002/ange.201601197 10.1021/jacs.7b04137 For selected examples see: 10.1021/jo016279z 10.1016/S0040-4020(02)00974-2 10.1002/anie.201305584 10.1002/ange.201305584 10.1021/acs.orglett.0c02751 10.1039/C4CS00451E   10.1021/jo00231a008 10.1021/jacs.5b03092 10.1021/om500964g 10.1021/cr00037a005 For recent reviews see 10.1002/anie.201411409 10.1002/ange.201411409 10.1021/acs.chemrev.5b00662 10.1021/acs.chemrev.6b00057 For selected reviews see: 10.1021/cr068352x 10.1039/b714786b 10.1002/cctc.201500125 10.1021/acs.accounts.6b00304 10.1002/ejoc.201601485 10.1016/j.checat.2021.04.008 10.1021/acs.chemrev.1c00263   10.1039/a804291h 10.1021/acs.accounts.5b00348 10.1038/nature22813 10.1002/cctc.201500562 10.1002/anie.201711250 10.1002/ange.201711250   10.1002/anie.201810187 10.1002/ange.201810187 10.1002/cssc.202200367 10.1016/j.theochem.2008.09.017   10.1021/jacs.5b05377 10.1038/nature19811 10.1021/acs.accounts.6b00272 For selected examples see: 10.1021/acs.orglett.5b00582 10.1002/anie.201501122 10.1002/ange.201501122 10.1021/acscatal.8b02847 10.1039/C7CC09457D 10.1039/C9SC02564B 10.1039/C8SC04366C 10.1021/acs.joc.9b02502 10.1039/C9SC04169A 10.1021/acs.orglett.0c02475 10.1021/acs.orglett.0c03992 K. R. Bajya M. Kumar A. Ansari S. Selvakumar ChemRxiv2022 DOI:10.26434/chemrxiv-2022-6tzsb. Please see supporting information for more details. 10.1021/acs.orglett.1c00065 For selected examples see: 10.1021/jo701855c 10.1021/acs.orglett.7b00672 10.1002/anie.202003070 10.1002/ange.202003070 10.1021/acs.orglett.1c04088 10.1021/acs.orglett.2c00698 10.1021/acscatal.5b02204