Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals
Tóm tắt
Biological sulfate reduction is increasingly replacing chemical unit processes in mining biotechnology. Sulfate reducing bacteria (SRB) can be used for treating ground‐ and surface waters contaminated with acid mine drainage (AMD), and for recovering metals from wastewater and process streams. Biologically produced H2S precipitates metals as metal sulfides, while biogenic bicarbonate alkalinity neutralizes acidic waters. This paper reviews various passive and active SRB‐based alternatives as well as some process design aspects, such as reactor types, process configurations, and choices of substrates for sulfate reduction. The latest developments of using various low‐cost substrates together with new bioprocess designs are increasing the uses and applications of SRB‐based bioreactors in AMD control and selective metal recovery.
Từ khóa
Tài liệu tham khảo
R. T. van Houten G. Lettinga Treatment of acid mine drainage with sulphate‐reducing bacteria using synthesis gas as energy and carbon source Mededelingen Landbouwkundige en Toegepaste Biologische Wetenschappen Gent University Gent (Belgium)1995 60 (4b) 2693–2700.
Dugan P. R., 1975, Bacterial ecology of strip mine areas and its relationship to the production of acidic mine drainage, Ohio J. Sci., 75, 266
B. Johnson Biological removal of sulfurous compounds from inorganic wastewaters inEnvironmental Technologies to Treat Sulfur Pollution: Principles and Engineering(Eds: P. Lens L. Hulshoff Pol) IWA Publishing London (UK)2000 175–205.
Lanouette K. H., 1977, Heavy metals removal, Chem. Eng., 84, 73
R. W. Peters Y. Ku D. Bhattacharyya Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters inAmerican Institute of Chemical Engineers (AIChE) Symposium Series: Separation of Heavy Metals and Other Trace Contaminants 243(Eds: R. W. Peters B. M. Kim) 1985 81 165–203.
O. J. Hao Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria inEnvironmental Technologies to Treat Sulfur Pollution: Principles and Engineering(Eds: P. N. L. Lens L. Hulshoff Pol) IWA Publishing London (UK)2000 393–414.
Veeken A. H. M., 2003, Innovative developments in the selective removal and reuse of heavy metals from wastewaters, Water Sci. Technol., 47, 9, 10.2166/wst.2003.0525
J. Boonstra R. van Lier G. Janssen H. Dijkman C. J. N. Buisman Biological treatment of acid mine drainage inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the Int. Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands) 1999 559–567.
K. Jalali S. A. Baldwin The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions Water Res.2000 34 797–806.
G. M. Gadd Heavy metal pollutants: environmental and biotechnological aspects inEncyclopedia of Microbiology(Ed: J. Lederberg) Academic Press Inc. Orlando FL (USA)1992 351–360.
Tuttle J. H., 1969, Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure, Appl. Microbiol., 17, 297, 10.1128/am.17.2.297-302.1969
S. Groudev A. Kontopoulos I. Spasova K. Komnitsas A. Angelov P. Georgiev In situ treatment of groundwater at Burgas Copper Mines Bulgaria by enhancing microbial sulphate reduction inGroundwater Quality: Remediation and Protection: Proc. of the GQ'98 Conference Tübingen (Germany) September 21–25 1998 (Eds: M. Herbert K. Kovar) IAHS Publication No. 250 1998 249–255.
R. B. Herbert Jr. S. G. Benner D. W. Blowes inGroundwater Quality: Remediation and Protection inProc. of the GQ'98 Conference Tübingen Germany September 21–25 1998 IAHS Publication No. 250 (Eds: M. Herbert K. Kovar) 1998 451–457.
M. Riekkola‐Vanhanen In situ bioreclamation of acid mine drainage inProc. of the 4thFinnish Conference of Environmental Sciences Tampere (Finland) May 21–22 1999 (Eds: S. Kuusisto S. Isoaho J. Puhakka) 1999 22–25.
E. Vestola Treatment of acid mine drainage by sulphate reducing bacteria (in Finnish) Master's Thesis Department of Civil and Environmental Engineering Helsinki University of Technology (Finland)2004 120 p.
M. Canty Innovative in situ treatment of acid mine drainage using sulphate‐reducing bacteria inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The 5thInt. in Situ and On‐site Bioremediation Symposium San Diego California April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 193–204.
M. Riekkola‐Vanhanen U.‐P. Mustikkamäki In situ treatment of acid mine drainage by sulphate reducing bacteria in an open pit mine inProc. of the International Biohydrometallurgy Symposium IBS97 BIOMINE 97 August 4–6 1997 Sydney (Australia) Australian Mineral Foundation Glenside (South Australia)1997.
B. E. Huntsman J. G. Solch M. D. Porter Utilization ofSphagnumspecies dominated bog for coal acid mine drainage abatement inAbstracts of the 91stAnnual Meetings of Geologic Society of America Toronto Ontario Canada 1978 322.
R. K. Wieder G. E. Lang Modification of acid mine drainage in a freshwater wetland inProc. of the Symposium on Wetlands of the Unglaciated Appalachian Region West Virginia University Morgantown W.Va May 26–28 1982 (Ed: B. R. McDonald) 1982 45–53.
Noller B. N., 1994, Case studies of wetland filtration of mine waste water in constructed and naturally occurring systems in northern Australia, Water Sci. Technol., 29, 257, 10.2166/wst.1994.0205
Eger P., 1994, Wetland treatment for trace metal removal from mine drainage: The importance of aerobic and anaerobic processes, Water Sci. Technol., 29, 249, 10.2166/wst.1994.0203
A. Fyson M. Kalin M. Smith Microbially‐mediated metal removal from acid mine drainage inEnvironmental Biotechnology: Principles and Applications(Ed: M. Moo‐Young W. A. Anderson A. M. Chakrabarty) Kluwer Academic Publishers Dordrecht (Netherlands)1995 533–543.
F. J. Sikora L. L. Behrends G. A. Brodie Manganese and trace metal removal in successive anaerobic and aerobic wetland environments inProc. of the 57thAnnual American Power Conference Chicago IL (USA) April 18–20 1995 1683–1690.
T. M. Roane I. L. Pepper R. M. Miller Microbial remediation of metals inBioremediation Principles and Applications(Eds: R. L. Crawford D. L. Crawford) Cambridge University Press New York (USA)1996 312–340.
C. L. Brierley J. A. Brierley M. S. Davidson Applied microbial processes for metals recovery and removal from wastewater inMetal Ions and Bacteria(Eds: T. J. Beveridge R. J. Doyle) John Wiley & Sons New York (USA)1989 359–382.
A. M. Sen B. Johnson Acidophilic sulphate‐reducing bacteria: candidates for bioremediation of acid mine drainage inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the Int. Biohydrometallurgy Symposium IBS'99 Madrid (Spain) June 20–23 1999 Part A:Bioleaching Microbiology(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands)1999 709–718.
A. Luptakova The biological‐chemical removal of heavy metals from acidic mine drainage inProc. of the Second European Bioremediation Conference Chania Crete Greece June 30–July 4 2003 Technical University of Crete (Greece)2003 300‐303.
L. J. Barnes J. Sherren F. J. Janssen P. J. H. Scheeren J. H. Versteegh R. O. Koch Simultaneous microbial removal of sulphate and heavy metals from wastewater in1stEuropean Metals Conference EMC'91: Non‐Ferrous Metallurgy – Present and Future Elsevier Science Publishers Ltd. (England)1991 391–401.
Ma X., 1997, Cd2+ removal from wastewater by sulfate reducing bacteria with an anaerobic fluidized bed reactor, J. Environ. Sci., 9, 366
A. L. de Vegt C. J. N. Buisman Full scale biological treatment of groundwater contaminated with heavy metals and sulfate inProc. of the 11thAnnual General Meeting of BIOMINET Ottawa (Canada) January 16 1995 (Eds: L. Lortie W. D. Gould S. Rajan) CANMET Special Publication SP 95‐1 Ottawa 1995 31–43.
A. C. F. de Lima M. M. Silva S. G. F. Leite M. M. M. Gonçalves M. Granato Anaerobic sulphate‐reducing microbial process using UASB reactors for heavy metals decontamination inClean Technology for the Mining Industry(Eds: M. A. Sánchez F. Vergara S. H. Castro) University of Concepción Concepción‐Chile 1996 141–152.
A. L. de Vegt C. J. N. Buisman Sulfur compounds and heavy metal removal using bioprocess technology in1996 EPD Proc.(Ed: G. W. Warren) TMS Warrendale PA (USA)1996 10 p.
R. W. Hammack H. Dijkman The application of bacterial sulfate reduction treatment to severely contaminated mine waters: Results of three years of pilot plant testing inProc. of Copper 99‐Cobre 99 International Conference Phoenix Arizona (USA) October 10–13 1999 Vol. IV:Hydrometallurgy of Copper(Eds: S. K. Young D. B. Dreisinger R. P. Hackl D. G. Dixon) The Minerals Metals & Materials Society Warrandale PA (USA)1999 97–111.
H. Dijkman C. J. N. Buisman H. G. Bayer Biotechnology in the mining and metallurgical industries: Cost savings through selective precipitation of metal sulfides inProc. of the Copper 99 – Cobre 99 International Conference Phoenix Arizona USA October 10–13 1999 Vol. IV:Hydrometallurgy of Copper(Eds: S. K. Young D. B. Dreisinger R. P. Hackl D. G. Dixon) The Minerals Metals & Materials Society Warrandale PA (USA)1999 113–126.
Farmer G. H., 1995, Metal removal and sulfate reduction in low‐sulfate mine drainage, Biorem. Inorg., 10, 17
C. M. Estrada Rendon G. Amara P. Leonard J. Tobin J. Roussy J. R. Degorce‐Dumas Acid mine drainage (AMD) treatment by sulphate reducing bacteria inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the International Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands)1999 577–585.
T. Wildeman J. Gusek J. Cevaal K. Whiting J. Scheuering Biotreatment of acid rock drainage at a gold‐mining operation inBioremediation of Inorganics(Eds: R. E. Hinchee J. L. Means D. R. Burris) Battle Press Columbus OH (USA)1995 141–148.
Groudeva V. I., 1996, Biological treatment of acid drainage waters from a copper mine, Miner. Slovaca, 28, 318
M. Zaluski M. Foote K. Manchester M. Canty M. Willis J. Consort et al. Design and construction of bioreactors with sulphate‐reducing bacteria for acid mine drainage control inPhytoremediation and Innovative Strategies for Specialized Remedial Applications; The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 205–210.
J. Gusek T. Wildeman Design construction and operation of a 1 200 gpm passive bioreactor for metal mine drainage inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 217–223.
Å. Kolmert K. B. Hallberg D. B. Johnson Remediation of acid mine drainage by sulphate reducing bacteria in biofilm reactors inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 225‐230.
G. Béchard S. Rajan W. D. Gould Characterization of a microbiological process for the treatment of acidic drainage inBiohydrometallurgical Technologies(Eds: A. E. Torma M. L. Apel C. L. Brierley) The Minerals Metals & Materials Society Warrandale PA (USA)1993 277–286.
R. W. Hammack D. H. Dvorak H. M. Edenborn Bench‐scale test to selectively recover metals from metal mine drainage using biogenic H2S inProc. 3rdInternational Conference on the Abatement of Acidic Drainage Pittsburgh PA (USA) April 24–29 1994 214–222.
A. Visser The anaerobic treatment of sulfate containing wastewater Doctoral Thesis Wageningen Agricultural University Wageningen (Netherlands)1995 139 p.
S. J. W. H. Oude Elferink Sulfate‐reducing bacteria in anaerobic bioreactors Doctoral Thesis Wageningen Agricultural University Wageningen (Netherlands)1998 136 p.
P. J. H. Scheeren R. O. Koch C. J. N. Buisman Geohydrological containment system and microbial water treatment plant for metal‐contaminated groundwater at Budelco inProc. of the Int. Symposium – World Zinc '93 Hobart Tasmania (Australia) October 10–13 1993 (Ed: G. M. Ian) The Australian Institute of Mining and Metallurgy Parkville Victoria (Australia)1993 373‐383.
A. L. de Vegt J. Krol C. J. N. Buisman Biological sulfate removal and metal recovery from mine waters inProc. of the International Biohydrometallurgy Symposium IBS97 BIOMINE 97 Sydney Australia August 4–6 1997 Australian Mineral Foundation Glenside South Australia 1997 1–10.
A. L. de Vegt H. Dijkman C. J. Buisman Hydrogen sulfide produced from sulfate by biological reduction for use in metallurgical operations inProc. of the Sulfide Smelting '98: Current and Future Practices San Antonio Texas (USA) February 16–19 1998 (Eds: J. A. Asteljoki R. L. Stephens) The Minerals Metals & Materials Society Warrandale PA (USA)1998 463–471.
Barnes L. J., 1991, A new process for the microbial removal of sulphate and heavy metals from contaminated waters extracted by a geohydrological control system, T. I. Chem. Eng., 69, 184
Anderson G. K., 1990, Pilot‐scale experiences on anaerobic fluidized‐bed treatment of brewery wastes, Water Sci. Technol., 22, 157, 10.2166/wst.1990.0078
Yoda M., 1989, Granular sludge formation in the anaerobic expanded micro‐carrier bed process, Water Sci. Technol., 21, 109, 10.2166/wst.1989.0215
H. Dijkman J. Boonstra R. W. Lawrence C. J. N. Buisman Optimization of metallurgical processes using high rate biotechnology Paper presented at theTMS 2002 131stMeeting of TMS of AIME Seattle Washington (USA) February 17–21 2002 113‐123.
Kalyuzhnyi S. V., 1997, Biological sulfate reduction in a UASB reactor fed with ethanol as the electron donor, Microbiology, 66, 562
M. Rowley D. D. Warkentin V. Sicotte Site demonstration of the biosulphide process at the former Britannia mine inProc. of the Fourth International Conference on Acid Rock Drainage Vancouver British Columbia (Canada) 1997 May 31–June 6 American Society of Surface Mining and Reclamation1997 4 1533–1547.
H. H. Tabak R. Scharp J. Burckle F. K. Kawahara R. Govind Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle Biodegradation2003 14 423–436.
R. Govind U. Kumar R. Puligadda J. Antia H. Tabak Biorecovery of metals from acid mine drainage inEmerging Technologies in Hazardous Waste Management 7(Eds: D. W. Tedder F. G. Pohland) Plenum Press New York (USA) 1997 91–101.
F. Widdel Microbiology and ecology of sulfate‐ and sulfur‐reducing bacteria inBiology of Anaerobic Microorganisms(Ed: A. J. B. Zehnder) John Wiley & Sons New York1988 469–585.
Isa Z., 1986, Sulfate reduction relative to methane production in high‐rate anaerobic digestion: Microbiological aspects, Appl. Environ. Microbiol., 51, 580, 10.1128/aem.51.3.580-587.1986
P. N. L. Lens F. Omil J. M. Lema L. W. Hulshoff Pol Biological treatment of organic sulphate‐rich wastewaters inEnvironmental Technologies to Treat Sulphur Pollution: Principles and Engineering(Ed: P. N. L. Lens L. W. Hulshoff Pol) IWA Publishing London (UK)2000 153–173.
M. Crine M. L. Sbai J. Bouayad A. Skalli Sulphate reduction optimization in the presence ofDesulfotomaculum acetoxidansandDesulfobacter postgateispecies: Application of factorial design and factorial correspondence analysis methods inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the International Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) 1999 June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Ed: R. Amils A. Ballester) Elsevier Amsterdam Netherlands 1999 759–768.
Visser A., 1992, Anaerobic treatment of synthetic sulfate‐containing wastewater under thermophilic conditions, Water Sci. Technol., 25, 193, 10.2166/wst.1992.0151
F. Omil P. Lens L. Hulshoff Pol G. Lettinga Effectsof upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor Process Biochem.1996 31 699–710.
J. B. van Lier Thermophilic anaerobic wastewater treatment: temperature aspects and process stability Ph.D. Thesis Wageningen Agricultural University Wageningen (Netherlands)1995 181 p.
J. A. Dean Lange's Handbook of Chemistry 15thed. McGraw‐Hill Inc New York (USA)1999 5.6 and 8.6–8.17.
Greben H. A., 2000, Comparison between sucrose, ethanol and methanol as carbon and energy sources for biological sulphate reduction, Water Sci. Technol, 41, 247, 10.2166/wst.2000.0279
F. Widdel T. A. Hansen The dissimilatory sulfate‐ and sulfur‐reducing bacteria inThe Prokaryotes: A Handbook on the Biology of Bacteria. Ecophysiology Isolation Identification Applications(Eds: A. Balows H. G. Trüper M. Dworkin W. Harder K.‐H. Schleifer) 2ndedition Vol. I Springer‐Verlag New York (USA)1992 584–624.
J. M. Akagi Respiratory sulfate reduction inSulfate‐Reducing Bacteria(Ed: L. L. Barton) Plenum Press New York (USA)1995 89‐111.
Rintala J. A., 1995, Sulphate reduction in thermophilic anaerobic treatment, Med. Fac. Landbouww. Univ. Gent, 60, 2721
Isa Z., 1986, Sulfate reduction relative to methane production in high‐rate anaerobic digestion: Technical aspects, Appl. Environ. Microbiol., 51, 572, 10.1128/aem.51.3.572-579.1986
Y. E. Collins G. Stotzky Factors affecting the toxicity of heavy metals to microbes inMetal Ions and Bacteria(Eds: T. J. Beveridge R. J. Doyle) John Wiley & Sons New York 1989 31–90.
Morton R. L., 1991, Relationships between metal concentration and crown corrosion in Los Angeles country sewers, Res. J. Water Pollut. Control Fed., 63, 789
Karnachuk O. V., 1995, Influence of hexavalent chromium on hydrogen sulfide formation by sulfate‐reducing bacteria, Mikrobiologiya, 64, 315
R. Pershad C. Q. Jia Copper toxicity on sulphate‐reducing bacteria inWaste Processing and Recycling III(Eds: S. R. Rao L. M. Amaratunga G. G. Richards P. D. Kondos) The Metallurgical Society of CIM 1998 455–466.
J. R. Postgate The Sulphate‐Reducing Bacteria 2nded. Cambridge University Press Cambridge (UK)1984 107–152.
Clancy P. B., 1992, Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters, Water Sci. Technol., 25, 51, 10.2166/wst.1992.0138
O. V. Karnachuck K. Sasaki A. L. Gerasimchuk O. Sukhanova D. A. Ivasenko A. H. Kaksonen et al. Precipitation of Cu‐sulfides by copper‐tolerantDesulfovibrioisolates (submitted).
Banat I. M., 1981, Evidence for coexistence of two distinct functional groups of sulfate‐reducing bacteria in salt marsh sediment, Appl. Environ. Microbiol., 42, 985, 10.1128/aem.42.6.985-992.1981