Sulfate Reduction Based Bioprocesses for the Treatment of Acid Mine Drainage and the Recovery of Metals

Engineering in Life Sciences - Tập 7 Số 6 - Trang 541-564 - 2007
Anna H. Kaksonen1, Jaakko A. Puhakka1
1Tampere University of Technology, Environmental Engineering and Biotechnology, Tampere, Finland

Tóm tắt

Abstract

Biological sulfate reduction is increasingly replacing chemical unit processes in mining biotechnology. Sulfate reducing bacteria (SRB) can be used for treating ground‐ and surface waters contaminated with acid mine drainage (AMD), and for recovering metals from wastewater and process streams. Biologically produced H2S precipitates metals as metal sulfides, while biogenic bicarbonate alkalinity neutralizes acidic waters. This paper reviews various passive and active SRB‐based alternatives as well as some process design aspects, such as reactor types, process configurations, and choices of substrates for sulfate reduction. The latest developments of using various low‐cost substrates together with new bioprocess designs are increasing the uses and applications of SRB‐based bioreactors in AMD control and selective metal recovery.

Từ khóa


Tài liệu tham khảo

10.1007/s002540050204

10.1016/0043-1354(96)00049-8

R. T. van Houten G. Lettinga Treatment of acid mine drainage with sulphate‐reducing bacteria using synthesis gas as energy and carbon source Mededelingen Landbouwkundige en Toegepaste Biologische Wetenschappen Gent University Gent (Belgium)1995 60 (4b) 2693–2700.

Dugan P. R., 1975, Bacterial ecology of strip mine areas and its relationship to the production of acidic mine drainage, Ohio J. Sci., 75, 266

10.1016/S0009-2509(00)00392-4

10.1023/A:1023219300286

10.1016/S0195-9255(99)00032-3

10.1007/s002540050275

B. Johnson Biological removal of sulfurous compounds from inorganic wastewaters inEnvironmental Technologies to Treat Sulfur Pollution: Principles and Engineering(Eds: P. Lens L. Hulshoff Pol) IWA Publishing London (UK)2000 175–205.

Lanouette K. H., 1977, Heavy metals removal, Chem. Eng., 84, 73

R. W. Peters Y. Ku D. Bhattacharyya Evaluation of recent treatment techniques for removal of heavy metals from industrial wastewaters inAmerican Institute of Chemical Engineers (AIChE) Symposium Series: Separation of Heavy Metals and Other Trace Contaminants 243(Eds: R. W. Peters B. M. Kim) 1985 81 165–203.

O. J. Hao Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria inEnvironmental Technologies to Treat Sulfur Pollution: Principles and Engineering(Eds: P. N. L. Lens L. Hulshoff Pol) IWA Publishing London (UK)2000 393–414.

Veeken A. H. M., 2003, Innovative developments in the selective removal and reuse of heavy metals from wastewaters, Water Sci. Technol., 47, 9, 10.2166/wst.2003.0525

10.1080/10643389891254188

10.1016/S0892-6875(01)00107-8

10.1002/ep.670010212

10.1002/ep.670010212

J. Boonstra R. van Lier G. Janssen H. Dijkman C. J. N. Buisman Biological treatment of acid mine drainage inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the Int. Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands) 1999 559–567.

K. Jalali S. A. Baldwin The role of sulphate reducing bacteria in copper removal from aqueous sulphate solutions Water Res.2000 34 797–806.

G. M. Gadd Heavy metal pollutants: environmental and biotechnological aspects inEncyclopedia of Microbiology(Ed: J. Lederberg) Academic Press Inc. Orlando FL (USA)1992 351–360.

10.1016/0964-8305(95)00036-5

10.1023/A:1020238520948

G. A. Robb J. D. F. Robinson Acid drainage from mines Geograph. J.1995 161 47–54.

10.1016/S0921-3449(99)00010-5

10.1016/0921-3449(91)90030-R

10.1016/0964-8305(95)00065-D

10.1111/j.1574-6976.1997.tb00333.x

10.2166/wst.2001.0467

10.1023/A:1023207921156

10.1002/bit.260400508

Tuttle J. H., 1969, Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure, Appl. Microbiol., 17, 297, 10.1128/am.17.2.297-302.1969

S. Groudev A. Kontopoulos I. Spasova K. Komnitsas A. Angelov P. Georgiev In situ treatment of groundwater at Burgas Copper Mines Bulgaria by enhancing microbial sulphate reduction inGroundwater Quality: Remediation and Protection: Proc. of the GQ'98 Conference Tübingen (Germany) September 21–25 1998 (Eds: M. Herbert K. Kovar) IAHS Publication No. 250 1998 249–255.

R. B. Herbert Jr. S. G. Benner D. W. Blowes inGroundwater Quality: Remediation and Protection inProc. of the GQ'98 Conference Tübingen Germany September 21–25 1998 IAHS Publication No. 250 (Eds: M. Herbert K. Kovar) 1998 451–457.

10.1021/es9703335

10.1021/es981040u

10.1016/S0043-1354(02)00159-8

M. Riekkola‐Vanhanen In situ bioreclamation of acid mine drainage inProc. of the 4thFinnish Conference of Environmental Sciences Tampere (Finland) May 21–22 1999 (Eds: S. Kuusisto S. Isoaho J. Puhakka) 1999 22–25.

E. Vestola Treatment of acid mine drainage by sulphate reducing bacteria (in Finnish) Master's Thesis Department of Civil and Environmental Engineering Helsinki University of Technology (Finland)2004 120 p.

10.1016/0892-6875(95)00129-8

M. Canty Innovative in situ treatment of acid mine drainage using sulphate‐reducing bacteria inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The 5thInt. in Situ and On‐site Bioremediation Symposium San Diego California April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 193–204.

10.1080/20025891106736

10.1023/A:1016092808563

M. Riekkola‐Vanhanen U.‐P. Mustikkamäki In situ treatment of acid mine drainage by sulphate reducing bacteria in an open pit mine inProc. of the International Biohydrometallurgy Symposium IBS97 BIOMINE 97 August 4–6 1997 Sydney (Australia) Australian Mineral Foundation Glenside (South Australia)1997.

B. E. Huntsman J. G. Solch M. D. Porter Utilization ofSphagnumspecies dominated bog for coal acid mine drainage abatement inAbstracts of the 91stAnnual Meetings of Geologic Society of America Toronto Ontario Canada 1978 322.

R. K. Wieder G. E. Lang Modification of acid mine drainage in a freshwater wetland inProc. of the Symposium on Wetlands of the Unglaciated Appalachian Region West Virginia University Morgantown W.Va May 26–28 1982 (Ed: B. R. McDonald) 1982 45–53.

Noller B. N., 1994, Case studies of wetland filtration of mine waste water in constructed and naturally occurring systems in northern Australia, Water Sci. Technol., 29, 257, 10.2166/wst.1994.0205

Eger P., 1994, Wetland treatment for trace metal removal from mine drainage: The importance of aerobic and anaerobic processes, Water Sci. Technol., 29, 249, 10.2166/wst.1994.0203

10.1080/10643389509388477

10.1007/s002540050435

10.1061/(ASCE)0733-9372(1996)122:1(83)

10.1016/S0043-1354(97)00401-6

A. Fyson M. Kalin M. Smith Microbially‐mediated metal removal from acid mine drainage inEnvironmental Biotechnology: Principles and Applications(Ed: M. Moo‐Young W. A. Anderson A. M. Chakrabarty) Kluwer Academic Publishers Dordrecht (Netherlands)1995 533–543.

F. J. Sikora L. L. Behrends G. A. Brodie Manganese and trace metal removal in successive anaerobic and aerobic wetland environments inProc. of the 57thAnnual American Power Conference Chicago IL (USA) April 18–20 1995 1683–1690.

T. M. Roane I. L. Pepper R. M. Miller Microbial remediation of metals inBioremediation Principles and Applications(Eds: R. L. Crawford D. L. Crawford) Cambridge University Press New York (USA)1996 312–340.

C. L. Brierley J. A. Brierley M. S. Davidson Applied microbial processes for metals recovery and removal from wastewater inMetal Ions and Bacteria(Eds: T. J. Beveridge R. J. Doyle) John Wiley & Sons New York (USA)1989 359–382.

10.1139/a96-117

10.1002/tox.2530060211

10.1002/(SICI)1098-2256(1997)12:2<101::AID-TOX1>3.0.CO;2-C

A. M. Sen B. Johnson Acidophilic sulphate‐reducing bacteria: candidates for bioremediation of acid mine drainage inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the Int. Biohydrometallurgy Symposium IBS'99 Madrid (Spain) June 20–23 1999 Part A:Bioleaching Microbiology(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands)1999 709–718.

A. Luptakova The biological‐chemical removal of heavy metals from acidic mine drainage inProc. of the Second European Bioremediation Conference Chania Crete Greece June 30–July 4 2003 Technical University of Crete (Greece)2003 300‐303.

L. J. Barnes J. Sherren F. J. Janssen P. J. H. Scheeren J. H. Versteegh R. O. Koch Simultaneous microbial removal of sulphate and heavy metals from wastewater in1stEuropean Metals Conference EMC'91: Non‐Ferrous Metallurgy – Present and Future Elsevier Science Publishers Ltd. (England)1991 391–401.

10.1099/13500872-142-8-2197

10.2175/WER.65.5.6

10.2175/106143000X138175

10.1016/0043-1354(85)90346-X

10.1007/BF02438697

Ma X., 1997, Cd2+ removal from wastewater by sulfate reducing bacteria with an anaerobic fluidized bed reactor, J. Environ. Sci., 9, 366

10.1023/A:1008840315404

A. L. de Vegt C. J. N. Buisman Full scale biological treatment of groundwater contaminated with heavy metals and sulfate inProc. of the 11thAnnual General Meeting of BIOMINET Ottawa (Canada) January 16 1995 (Eds: L. Lortie W. D. Gould S. Rajan) CANMET Special Publication SP 95‐1 Ottawa 1995 31–43.

A. C. F. de Lima M. M. Silva S. G. F. Leite M. M. M. Gonçalves M. Granato Anaerobic sulphate‐reducing microbial process using UASB reactors for heavy metals decontamination inClean Technology for the Mining Industry(Eds: M. A. Sánchez F. Vergara S. H. Castro) University of Concepción Concepción‐Chile 1996 141–152.

A. L. de Vegt C. J. N. Buisman Sulfur compounds and heavy metal removal using bioprocess technology in1996 EPD Proc.(Ed: G. W. Warren) TMS Warrendale PA (USA)1996 10 p.

R. W. Hammack H. Dijkman The application of bacterial sulfate reduction treatment to severely contaminated mine waters: Results of three years of pilot plant testing inProc. of Copper 99‐Cobre 99 International Conference Phoenix Arizona (USA) October 10–13 1999 Vol. IV:Hydrometallurgy of Copper(Eds: S. K. Young D. B. Dreisinger R. P. Hackl D. G. Dixon) The Minerals Metals & Materials Society Warrandale PA (USA)1999 97–111.

H. Dijkman C. J. N. Buisman H. G. Bayer Biotechnology in the mining and metallurgical industries: Cost savings through selective precipitation of metal sulfides inProc. of the Copper 99 – Cobre 99 International Conference Phoenix Arizona USA October 10–13 1999 Vol. IV:Hydrometallurgy of Copper(Eds: S. K. Young D. B. Dreisinger R. P. Hackl D. G. Dixon) The Minerals Metals & Materials Society Warrandale PA (USA)1999 113–126.

10.2175/106143000X138102

10.1002/1097-4660(200101)76:1<61::AID-JCTB357>3.0.CO;2-O

10.4314/wsa.v30i4.5105

10.1021/es00115a725

10.1023/B:BITE.0000034019.54863.31

10.2166/wst.2002.0294

10.1016/S0043-1354(98)00134-1

10.1002/bit.21288

10.1002/bit.260220402

10.1038/sj.jim.2900406

10.1016/0892-6875(96)00088-X

10.1016/S0273-1223(98)00591-5

10.1007/BF00240748

10.1016/0043-1354(87)90042-X

10.1016/0043-1354(94)90047-7

Farmer G. H., 1995, Metal removal and sulfate reduction in low‐sulfate mine drainage, Biorem. Inorg., 10, 17

10.1016/S0043-1354(98)00144-4

10.2175/106143096X122375

C. M. Estrada Rendon G. Amara P. Leonard J. Tobin J. Roussy J. R. Degorce‐Dumas Acid mine drainage (AMD) treatment by sulphate reducing bacteria inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the International Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Eds: R. Amils A. Ballester) Elsevier Amsterdam (Netherlands)1999 577–585.

10.1016/S0043-1354(99)00268-7

10.1023/A:1022666310393

T. Wildeman J. Gusek J. Cevaal K. Whiting J. Scheuering Biotreatment of acid rock drainage at a gold‐mining operation inBioremediation of Inorganics(Eds: R. E. Hinchee J. L. Means D. R. Burris) Battle Press Columbus OH (USA)1995 141–148.

Groudeva V. I., 1996, Biological treatment of acid drainage waters from a copper mine, Miner. Slovaca, 28, 318

M. Zaluski M. Foote K. Manchester M. Canty M. Willis J. Consort et al. Design and construction of bioreactors with sulphate‐reducing bacteria for acid mine drainage control inPhytoremediation and Innovative Strategies for Specialized Remedial Applications; The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 205–210.

J. Gusek T. Wildeman Design construction and operation of a 1 200 gpm passive bioreactor for metal mine drainage inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 217–223.

10.1023/A:1005016406707

Å. Kolmert K. B. Hallberg D. B. Johnson Remediation of acid mine drainage by sulphate reducing bacteria in biofilm reactors inPhytoremediation and Innovative Strategies for Specialized Remedial Applications: The Fifth International in Situ and On‐site Bioremediation Symposium San Diego California (USA) April 18–22 1999 (Eds: A. Leeson B. C. Alleman) Battelle Press Columbus OH (USA)1999 225‐230.

10.1002/jctb.453

G. Béchard S. Rajan W. D. Gould Characterization of a microbiological process for the treatment of acidic drainage inBiohydrometallurgical Technologies(Eds: A. E. Torma M. L. Apel C. L. Brierley) The Minerals Metals & Materials Society Warrandale PA (USA)1993 277–286.

10.1007/s002540100298

10.1061/(ASCE)0733-9372(1999)125:6(532)

10.1016/S0956-053X(00)00061-1

10.1016/S0892-6875(02)00084-5

10.1016/S0043-1354(03)00165-9

R. W. Hammack D. H. Dvorak H. M. Edenborn Bench‐scale test to selectively recover metals from metal mine drainage using biogenic H2S inProc. 3rdInternational Conference on the Abatement of Acidic Drainage Pittsburgh PA (USA) April 24–29 1994 214–222.

10.1007/BFb0002455

10.1016/S0273-1223(99)00610-1

10.1016/0043-1354(92)90149-X

10.1016/S0043-1354(96)00209-6

10.1002/bit.260440505

10.1002/1097-0290(20001120)70:4<370::AID-BIT2>3.0.CO;2-7

10.1016/S0043-1354(02)00267-1

10.1023/A:1024262607099

10.1002/bit.20061

10.1002/bit.21195

A. Visser The anaerobic treatment of sulfate containing wastewater Doctoral Thesis Wageningen Agricultural University Wageningen (Netherlands)1995 139 p.

S. J. W. H. Oude Elferink Sulfate‐reducing bacteria in anaerobic bioreactors Doctoral Thesis Wageningen Agricultural University Wageningen (Netherlands)1998 136 p.

P. J. H. Scheeren R. O. Koch C. J. N. Buisman Geohydrological containment system and microbial water treatment plant for metal‐contaminated groundwater at Budelco inProc. of the Int. Symposium – World Zinc '93 Hobart Tasmania (Australia) October 10–13 1993 (Ed: G. M. Ian) The Australian Institute of Mining and Metallurgy Parkville Victoria (Australia)1993 373‐383.

A. L. de Vegt J. Krol C. J. N. Buisman Biological sulfate removal and metal recovery from mine waters inProc. of the International Biohydrometallurgy Symposium IBS97 BIOMINE 97 Sydney Australia August 4–6 1997 Australian Mineral Foundation Glenside South Australia 1997 1–10.

A. L. de Vegt H. Dijkman C. J. Buisman Hydrogen sulfide produced from sulfate by biological reduction for use in metallurgical operations inProc. of the Sulfide Smelting '98: Current and Future Practices San Antonio Texas (USA) February 16–19 1998 (Eds: J. A. Asteljoki R. L. Stephens) The Minerals Metals & Materials Society Warrandale PA (USA)1998 463–471.

10.1023/A:1008389722892

Barnes L. J., 1991, A new process for the microbial removal of sulphate and heavy metals from contaminated waters extracted by a geohydrological control system, T. I. Chem. Eng., 69, 184

Anderson G. K., 1990, Pilot‐scale experiences on anaerobic fluidized‐bed treatment of brewery wastes, Water Sci. Technol., 22, 157, 10.2166/wst.1990.0078

10.1007/s002530050994

10.2175/106143098X127017

10.1002/bit.260240609

Yoda M., 1989, Granular sludge formation in the anaerobic expanded micro‐carrier bed process, Water Sci. Technol., 21, 109, 10.2166/wst.1989.0215

10.1016/0043-1354(94)E0123-N

10.1023/A:1027332918844

10.1016/j.memsci.2004.12.032

H. Dijkman J. Boonstra R. W. Lawrence C. J. N. Buisman Optimization of metallurgical processes using high rate biotechnology Paper presented at theTMS 2002 131stMeeting of TMS of AIME Seattle Washington (USA) February 17–21 2002 113‐123.

Kalyuzhnyi S. V., 1997, Biological sulfate reduction in a UASB reactor fed with ethanol as the electron donor, Microbiology, 66, 562

M. Rowley D. D. Warkentin V. Sicotte Site demonstration of the biosulphide process at the former Britannia mine inProc. of the Fourth International Conference on Acid Rock Drainage Vancouver British Columbia (Canada) 1997 May 31–June 6 American Society of Surface Mining and Reclamation1997 4 1533–1547.

10.1016/j.mineng.2004.02.006

H. H. Tabak R. Scharp J. Burckle F. K. Kawahara R. Govind Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle Biodegradation2003 14 423–436.

R. Govind U. Kumar R. Puligadda J. Antia H. Tabak Biorecovery of metals from acid mine drainage inEmerging Technologies in Hazardous Waste Management 7(Eds: D. W. Tedder F. G. Pohland) Plenum Press New York (USA) 1997 91–101.

10.1080/08927019609386273

10.1002/(SICI)1097-4660(199711)70:3<223::AID-JCTB762>3.0.CO;2-L

10.1016/S0944-5013(97)80025-0

F. Widdel Microbiology and ecology of sulfate‐ and sulfur‐reducing bacteria inBiology of Anaerobic Microorganisms(Ed: A. J. B. Zehnder) John Wiley & Sons New York1988 469–585.

10.1128/AEM.68.6.2829-2837.2002

10.1016/S0960-8524(97)00014-X

Isa Z., 1986, Sulfate reduction relative to methane production in high‐rate anaerobic digestion: Microbiological aspects, Appl. Environ. Microbiol., 51, 580, 10.1128/aem.51.3.580-587.1986

10.1016/0043-1354(94)90273-9

10.1002/(SICI)1097-0290(19980320)57:6<676::AID-BIT5>3.0.CO;2-I

P. N. L. Lens F. Omil J. M. Lema L. W. Hulshoff Pol Biological treatment of organic sulphate‐rich wastewaters inEnvironmental Technologies to Treat Sulphur Pollution: Principles and Engineering(Ed: P. N. L. Lens L. W. Hulshoff Pol) IWA Publishing London (UK)2000 153–173.

10.1002/bit.260440318

M. Crine M. L. Sbai J. Bouayad A. Skalli Sulphate reduction optimization in the presence ofDesulfotomaculum acetoxidansandDesulfobacter postgateispecies: Application of factorial design and factorial correspondence analysis methods inBiohydrometallurgy and the Environment toward the Mining of the 21stCentury: Proc. of the International Biohydrometallurgy Symposium IBS'99 San Lorenzo de El Escorial Madrid (Spain) 1999 June 20–23 Part B:Molecular Biology Biosorption Bioremediation(Ed: R. Amils A. Ballester) Elsevier Amsterdam Netherlands 1999 759–768.

10.2175/106143097X122077

Visser A., 1992, Anaerobic treatment of synthetic sulfate‐containing wastewater under thermophilic conditions, Water Sci. Technol., 25, 193, 10.2166/wst.1992.0151

10.1016/0960-8524(95)00117-4

F. Omil P. Lens L. Hulshoff Pol G. Lettinga Effectsof upward velocity and sulphide concentration on volatile fatty acid degradation in a sulphidogenic granular sludge reactor Process Biochem.1996 31 699–710.

10.1016/S0964-8305(01)00038-5

10.1016/S0273-1223(97)00524-6

10.1016/S0043-1354(99)00132-3

10.1007/s007750050125

10.1016/j.pbiomolbio.2004.11.003

10.1016/0043-1354(93)90163-C

J. B. van Lier Thermophilic anaerobic wastewater treatment: temperature aspects and process stability Ph.D. Thesis Wageningen Agricultural University Wageningen (Netherlands)1995 181 p.

J. A. Dean Lange's Handbook of Chemistry 15thed. McGraw‐Hill Inc New York (USA)1999 5.6 and 8.6–8.17.

10.1002/(SICI)1097-0290(19970905)55:5<807::AID-BIT11>3.0.CO;2-8

10.1023/A:1011100120121

Greben H. A., 2000, Comparison between sucrose, ethanol and methanol as carbon and energy sources for biological sulphate reduction, Water Sci. Technol, 41, 247, 10.2166/wst.2000.0279

10.1007/BF00872194

10.1023/A:1008334219332

10.1016/j.jbiotec.2005.03.007

10.1002/(SICI)1097-0290(19960420)50:2<136::AID-BIT3>3.0.CO;2-N

10.1021/bp034329a

F. Widdel T. A. Hansen The dissimilatory sulfate‐ and sulfur‐reducing bacteria inThe Prokaryotes: A Handbook on the Biology of Bacteria. Ecophysiology Isolation Identification Applications(Eds: A. Balows H. G. Trüper M. Dworkin W. Harder K.‐H. Schleifer) 2ndedition Vol. I Springer‐Verlag New York (USA)1992 584–624.

10.1007/BF01570054

10.1002/1097-0290(20001205)70:5<533::AID-BIT8>3.0.CO;2-C

10.1016/S0032-9592(03)00002-5

10.1016/S0043-1354(98)00342-X

10.1080/09593332008616840

10.1016/j.watres.2004.03.030

J. M. Akagi Respiratory sulfate reduction inSulfate‐Reducing Bacteria(Ed: L. L. Barton) Plenum Press New York (USA)1995 89‐111.

10.1007/BF00871638

10.1099/00207713-50-1-25

10.1007/BF00411048

10.1007/BF00249012

10.1016/S0375-6742(98)00028-4

10.1021/es010751g

10.1021/es026131c

10.4028/www.scientific.net/AMR.20-21.326

10.1016/j.biortech.2003.09.004

10.1021/es020822r

10.1023/A:1023227616422

10.1128/AEM.71.7.3725-3733.2005

10.1007/s00253-004-1878-x

10.1016/j.watres.2007.01.030

10.1099/ijs.0.63780-0

10.4314/wsa.v27i4.4956

10.1007/s10230-006-0128-0

10.1080/10643389609388489

10.1179/174328506X91310

10.4028/www.scientific.net/AMR.20-21.324

10.1007/s10532-005-3050-4

10.1111/j.1574-6968.1990.tb03941.x

10.1080/09593338909384801

10.1111/j.1574-6976.1994.tb00130.x

10.1002/bit.260400506

10.1016/0273-1223(96)00324-1

Rintala J. A., 1995, Sulphate reduction in thermophilic anaerobic treatment, Med. Fac. Landbouww. Univ. Gent, 60, 2721

10.1023/A:1008307929134

Isa Z., 1986, Sulfate reduction relative to methane production in high‐rate anaerobic digestion: Technical aspects, Appl. Environ. Microbiol., 51, 572, 10.1128/aem.51.3.572-579.1986

10.1016/S0960-8524(98)00146-1

10.1023/A:1008382102417

10.2175/106143096X128126

10.1016/S0032-9592(98)00018-1

10.1016/S0043-1354(99)00029-9

Y. E. Collins G. Stotzky Factors affecting the toxicity of heavy metals to microbes inMetal Ions and Bacteria(Eds: T. J. Beveridge R. J. Doyle) John Wiley & Sons New York 1989 31–90.

10.1016/0964-8305(95)00082-G

10.1111/j.1574-6941.1994.tb00099.x

10.1007/BF02013274

Morton R. L., 1991, Relationships between metal concentration and crown corrosion in Los Angeles country sewers, Res. J. Water Pollut. Control Fed., 63, 789

10.1016/0269-7491(90)90072-K

10.1080/02772249409358113

10.1016/S0273-1223(98)00527-7

Karnachuk O. V., 1995, Influence of hexavalent chromium on hydrogen sulfide formation by sulfate‐reducing bacteria, Mikrobiologiya, 64, 315

10.1080/10934529109375708

10.1080/01490459709378032

R. Pershad C. Q. Jia Copper toxicity on sulphate‐reducing bacteria inWaste Processing and Recycling III(Eds: S. R. Rao L. M. Amaratunga G. G. Richards P. D. Kondos) The Metallurgical Society of CIM 1998 455–466.

J. R. Postgate The Sulphate‐Reducing Bacteria 2nded. Cambridge University Press Cambridge (UK)1984 107–152.

Clancy P. B., 1992, Biochemical inhibition of sulfate reduction in batch and continuous anaerobic digesters, Water Sci. Technol., 25, 51, 10.2166/wst.1992.0138

O. V. Karnachuck K. Sasaki A. L. Gerasimchuk O. Sukhanova D. A. Ivasenko A. H. Kaksonen et al. Precipitation of Cu‐sulfides by copper‐tolerantDesulfovibrioisolates (submitted).

10.1099/00221287-6-1-2-128

Banat I. M., 1981, Evidence for coexistence of two distinct functional groups of sulfate‐reducing bacteria in salt marsh sediment, Appl. Environ. Microbiol., 42, 985, 10.1128/aem.42.6.985-992.1981

10.1002/bit.260310817

10.1007/BF00252537

10.1007/BF00903790

10.1016/S0273-1223(97)00714-2

10.1002/bit.20040

10.1007/BF00257609

10.1061/(ASCE)0733-9372(1989)115:2(302)

10.1128/AEM.69.4.2313-2320.2003