Sugarcane as a Bioenergy Source: History, Performance, and Perspectives for Second-Generation Bioethanol

Amanda P. De Souza1, Adriana Grandis1, Débora C C Leite1, Marcos Silveira Buckeridge1
1Laboratório de Fisiologia Ecológica de Plantas (LAFIECO), Department of Botany, Institute of Bioscience, University of São Paulo, São Paulo, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lynd LR (2008) Energy biotechnology. Curr Opin Biotech 19:199–201

Lynd LR, Laser MS, Bransby D, Dale BE, Davison B, Hamilton R, Himmel M, Keller M, McMillan JD, Sheehan J, Wyman CE (2008) How biotech can transform biofuels. Nature Biotechnol 26:169–172

McKendry P (2002) Energy production from biomass (part 1): overview of biomass. Bioresource Technol 83:37–46

Muchow RC, Wood AW, Keating BA (1994) Radiation interception and biomass accumulation in a sugarcane crop grown under irrigated tropical conditions. Aust J Agr Res 45:37–49

USGA—Usina Serra Grande Alagoas (2000) Em 1927, o Primeiro grande empreendimento brasileiro em álcool combustivel. Boletim Enfoque 7

BNDES and CGEE—Banco Nacional de Desenvolvimento Econômico e Social & Centro de Gestão e Estudos Estratégicos (2008) Sugarcane-based bioethanol: energy for sustainable development. BNDES, Rio de Janeiro

Wrigley A (2011) Opening Pandora's box: a new look at the industrial revolution. Vox, Research-based policy analysis and commentary from leading economists. http://www.voxeu.org/article/industrial-revolution-energy-revolution . Accessed 4 Mar 2013

Goldemberg J (2007) Ethanol for a sustainable energy future. Science 315:808–810

Goldemberg J (2010) The role of biomass in the world's energy system. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 3–14

British Petroleum (BP) (2006) Statistical review of world energy. www.bp.com/liveassets/bp_internet/globalbp/globalbp_uk_english/publications/energy_reviews_2006/STAGING/local_assets/downloads/spreadsheets/statistical_review_full_report_workbook_2006.xls . Accessed 27 Oct 2012

Amorim HV, Lopes ML, Oliveira JVCO, Buckeridge MS, Goldman GH (2011) Scientific challenges of bioethanol production in Brazil. Appl Microbiol Biotechnol 91:1267–1275

Karp A, Shield I (2008) Bioenergy from plants and the sustainable yield challenge. New Phytol 179:1–18

Fisher G, Prieler S, van Velthuizen H (2005) Biomass potential of miscanthus, willow and poplar: results and policy implications for Eastern Europe, Northern and Central Asia. Biomass Bioenergy 28:119–132

Schemer MR, Vogel KP, Mitchell RB, Perrin RK (2008) Net energy of cellulosic ethanol from switchgrass. PNAS 15:464–469

Yuan JS, Tiller KH, Al-Ahmad H, Stewart NR, Stewart CN (2008) Plants to power: bioenergy to fuel the future. Trends Plant Sci 13(8):421–429

Cherubini F (2010) GHG balances of bioenergy systems—overview of key steps in the production chain and methodological concerns. Renew Energ 35:1565–1573

Davis SC, Anderson-Teixeira KJ, DeLucia EH (2009) Life-cycle analysis and the ecology of biofuels. Trends Plant Sci 14:140–146

Somerville C, Youngs H, Taylor C, Davis SC, Long SP (2010) Feedstocks for lignocellulosic biofuels. Science 329:790–792

USDA (2011) Biomass crop assistance program. Proposed BCAP giant miscanthus (Miscanthus × giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. http://www.fsa.usda.gov/Internet/FSA_File/eamfabcap.pdf . Accessed 10 Oct 2012

Huisman W (2003) Optimising harvesting and storage systems for energy crops in The Netherlands. International Conference on Crop Harvesting and Processing Louisville, Kentucky. http://realneo.us/system/files/Optimisingharvestingandstoragesystems2003.pdf . Accessed 10 Oct 2012

Balat M, Balat H (2009) Recent trends in global production and utilization of bio-ethanol fuel. Appl Energ 86(11):2273–2282

Erdal G, Esengün K, Erdal H, Gündüz O (2007) Energy use and economical analysis of sugar beet production in Tokat province of Turkey. Energ 32(1):35–41

Pimentel D, Patzek TW (2005) Ethanol production using corn, switchgrass, and wood; biodiesel production using soybean and sunflower. Nat Res Research 14(1):65–76

Lewandowski I, Clifton-Brown JC, Andersson B, Basch G, Christian DG, Jørgensen U, Jones MB, Riche AB, Schhwarz KU, Tayebi K, Teixeira F (2003) Environment and harvest time affects the combustion qualities of genotypes. Agron J 95(5):1274–1280

McLaughlin SB, Adams Kszos L (2005) Development of switchgrass (Panicum virgatum) as a bioenergy feedstock in the United States. Biomass Bioenergy 28(6):515–535

Aylott MJ, Casella E, Tubby I, Street NR, Smith P, Taylor G (2008) Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK. New Phytol 178(2):358–70

Rooney WL, Texas A (2007) Designing sorghum as a dedicated bioenergy feedstock. Biofuels, Bioproducts Biorefining 1(2):147–157

Khanna M, Dhungana B, Clifton-Brown J (2008) Costs of producing miscanthus and switchgrass for bioenergy in Illinois. Biomass Bioenergy 32:482–493

Vogel KP, Masters RA (1998) Developing switchgrass into a biomass fuel crop for the Midwestern USA. Bioenergy '98: Expanding Bioenergy Paternships. Madison, WI. https://bioenergy.ornl.gov/papers/bioen98/vogel.html . Accessed 15 Oct 2012

Stanturf JA, van Oosten C, Netzer DA, Coleman MD, Portwood CJ (2001) Ecology and silviculture of poplar plantations. In: Dickman DI, Isebrands JG, Eckenwalder JE, Richardson J (eds) Poplar culture in North America. NRC Research, Ottawa, pp. 153–206

Galbally P, Ryan D, Fagan CC, Finnan J, Grant J, McDonnell K (2012) Biosolid and distillery effluent amendments to Irish short rotation coppiced willow plantations: impacts on groundwater quality and soil. Agr Water Managment 116:193–203

Börjesson P, Tufvesson LM (2011) Agricultural crop-based biofuels—resource efficiency and environmental performance including direct land use changes. J Cleaner Production 19(2–3):108–120

Uellendahl H, Wang G, Møller HB, Jørgensen U, Skiadas IV, Gavala HN, Ahring BK (2008) Energy balance and cost-benefit analysis of biogas production from perennial energy crops pretreated by wet oxidation. Water Sci Technol 58(9):1841–7

Goldemberg J, Coelho ST, Guardabassi P (2008) The sustainability of ethanol production from sugarcane. Energ Policy 36(6):2086–2097

Schneekloth J, Andales A (2009) Seasonal water needs and opportunities for limited irrigation for Colorado crops. Fact sheet no. 4718. http://www.ext.colostate.edu/pubs/crops/04718.html . Accessed 25 Jan 2013

USDA (2011) Proposed BCAP giant miscanthus (Miscanthus × giganteus) establishment and production in Arkansas, Missouri, Ohio, and Pennsylvania. Biomass Crop Assistant Program–Environmental Assessment. http://www.fsa.usda.gov/Internet/FSA_File/eamfabcap.pdf . Accessed 25 Jan 2013

Singh S, Kumar A (2011) Development of water requirement factors for biomass conversion pathway. Biores Technol 102(2):1316–28

Grip H, Perttu K (1982) Climate and water influences on energy forestry. Teknisk Rapport—Projekt Energiskogsodling 29: 20

Clinch RL, Thevathasan NV, Gordon AM, Volk TA, Sidders DM (2009) Biophysical interactions in a short rotation willow intercropping system in southern Ontario, Canada. Agric Ecosyst Environ 131(1–2):61–69

CEPEGE (2012) Custos de produçao de cana-de-açúcar, açúcar e etanol no Brasil: acompanhamento da safra 2011/2012. Centro-Sul, Piracicaba, pp 57–59

Maung TA, Gustafson CR (2011) The economic feasibility of sugar beet biofuel production in central North Dakota. Biomass Bioenergy 35(9):3737–3747

Linton JA, Miller JC, Little RD, Petrolia DR, Coble KH (2011) Economic feasibility of producing sweet sorghum as an ethanol feedstock in the southeastern United States. Biomass Bioenergy 35(7):3050–3057

Walsh ME, Ugarte DT, Shapouri H, Slinsky SP (2003) Bioenergy crop production in the United States: potential quantities, land use changes, and economic impacts on the agricultural sector. Environ Res Econ 24:313–333

Snowdon K, McIvor I, Nicholas, I (2008). Energy farming with willow in New Zealand. http://www.bioenergy.org.nz/documents/liquidbiofuels/complete-nz-willow-handbook.pdf . Accessed 25 January 2013

IEA (2007) International Energy Agency. Energy technology essentials—biofuel production. http://www.iea.org/techno/essentials2.pdf . Accessed 15 Oct 2012

Martinelli LA, Filoso S (2008) Expansion of sugarcane ethanol production in Brazil: environmental and social challenges. Ecol Appl 18(4):885–898

Worley JW, Vaughan DH, Cundiff JS (1992) Energy analysis of ethanol production from sweet sorghum. Biores Technol 40(3):263–273

Rastogi M, Gustafson R, Cooper J, Volk T, Caputo J, Johnson L, Puettmann M (2011) Life cycle assessment (LCA) of ethanol fuel from willow biomass. http://www.corrim.org/presentations/video/2011/FPS_Biomass/pdfs/05_Gustafson.pdf . Accessed 22 Nov 2012

FAO (2010) FAOSTAT—Food and Agriculture Organization of the United Nations. http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor . Accessed 10 Oct 2012

Wang D, Bean S, McLaren J, Seib P, Madl R, Tuinstra M, Shi Y, Lenz M, Wu X, Zhao R (2008) Grain sorghum is a viable feedstock for ethanol production. J Ind Microbiol Biotechnol 35(5):313–320

Hauser RJ (2007) Introduction and summary. In: U. of I. Department of Agricultural and Consumer Economics (ed). Corn-based ethanol in Illinois and the US: a report from the Department of Agricultural and consumer Economics. Champaign-Urbana, IL

Haque M, Epplin F (2010) Switchgrass to ethanol: a field to fuel approach. Agricultural & Applied Economics Association 2010 AAEA, CAES, & WAEA Joint Annual Meeting. Denver, Colorado. http://ageconsearch.umn.edu/bitstream/61294/2/P-AAEA10-Haque.pdf . Accessed 22 Nov 2012

Huang H-J, Ramaswamy S, Al-Dajani W, Tschirner U, Cairncross RA (2009) Effect of biomass species and plant size on cellulosic ethanol: a comparative process and economic analysis. Biomass Bioenergy 33(2):234–246

von Sivers M, Zacchi G, Olsson L, Hahn-Hägerdal B (1994) Cost analysis of ethanol production from willow using recombinant Escherichia coli. Biotechnol Progress 10(5):555–560

Robbins MP, Evans G, Valentine J, Donnison IS, Allison GG (2012) New opportunities for the exploitation of energy crops by thermochemical conversion in Northern Europe and the UK. Prog Energ Combust Scie 38:138–155

Smeets EMW, Lewandoswski IM, Faaij APC (2009) The economical and environmental performance of miscanthus and switchgrass production and supply chains in a European setting. Renew Sust Energ Rev 13:1230–1245

Koizumi T (2008) Biofuel policies in Asia. In: FAO Expert Meetings, vols. 5 and 6, Rome, Italy

Puri M, Abraham RE, Barrow CJ (2009) Biofuel production: prospects, challenges and feedstock in Australia. Renew Sust Energ Rev 16:6022–6031

Watson HK (2011) Potential to expand sustainable bioenergy from sugarcane in southern Africa. Energ Policy 39:5746–5750

Martinez-Filho J, Burnquist HL, Vian CEF (2006) Bioenergy and the rise of sugarcane-based ethanol in Brazil. The magazine of food, farm, and resource issues. 2nd Quarter. 21(2) CHOICES 91

CGEE (Centro de Gestão e Estudos Estratégicos) (2009) Bioetanol combustível: uma oportunidade para o Brasil. Centro de Gestão e Estudos Estratégicos, Brasília, Distrito Federal, p 536

UNICA (2012) Statistics of sugarcane sector—2012. http://www.unica.com.br/dadosCotacao/estatistica/ . Accessed 12 Mar 2013

Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM (2010) Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J 8(3):263–276

Buckeridge MS, Dos Santos WD, De Souza AP (2010) Routes for cellulosic ethanol in Brazil. In: Cortez LAB (ed) Sugarcane bio-ethanol: R&D for productivity and sustainability. Edgard Blucher, São Paulo, pp 365–380

Dias MOS, Modesta M, Ensinas AV, Nebras SA, Maciel Filho R, Rossel CEV (2011) Improving bioethanol production from sugarcane: evaluation of distillation, thermal integration and cogeneration systems. Energ 36:3691–3703

Soccol CR, Vandenberghe LPS, Medeiros ABP, Karp SG, Buckeridge MS, Ramos LP, Pitarelo AP, Ferreira-Leitão V, Gottschalk LM, Ferrara MA, da Silva Bon EP, de Moraes LM, de Araújo JA, Torres FA (2010) Bioethanol from lignocelluloses: status and perspectives in Brazil. Bioresearch Technol 101:4820–4825

Arruda P (2011) Perspective of sugarcane industry in Brazil. Trop Plant Biol 4:3–8

Leal MRLV, Valle TL, Feltan JC et al (2010) Other feedstocks to etanol production. In: Cortez LAB (ed) Sugarcane bioethanol—R&D for productivity and sustainability. Blucher, São Paulo, pp 519–539

Moore PH (1995) Temporal and spatial regulation of sucrose metabolism in the sugarcane stem. Aust J Plant Physiol 22:661–679

Figueiredo P (2008) Breve história da cana de açúcar e do papel do instituto agronômico no seu estabelecimento no Brasil. In: Dinardo-Miranda LL, Vanconcelos ACM, Landell MGA (eds) Cana-de-açúcar. Campinas, São Paulo, pp 31–44

Landell MGA, Bressiani JA (2008) Melhoramento genetico, caracterização e manejo varietal. In: Dinardo-Miranda LL, Vanconcelos ACM, Landell MGA (eds.) Cana de açúcar. Instituto Agronômico, Campinas, Sao Paulo, p 882

Loureiro ME, Barbosa MHP, Lopes FJF et al (2010) Sugarcane breeding and selection for more efficient biomass conversion in cellulosic ethanol. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 199–240

Macedo IC, Cortez LAB (2005) O processamento industrial da cana de açúcar no Brasil. In: Uso da biomassa para produção de energia na industria brasileira. Campinas, São Paulo, pp. 247–268

Whittaker A, Botha FC (1997) Carbon partitioning during sucrose accumulation in sugarcane internodal tissue. Plant Physiol 115:1651–1659

Rohwer JM, Botha FC (2001) Analysis of sucrose accumulation in the sugarcane culm on the basis of in vitro kinetic data. Biochem J 358:437–445

Rae AL, Perroux J, Grof CPL (2005) Sucrose partitioning between vascular bundles and storage parenchyma in the sugarcane stem: a potential role for the ShSUT1 sucrose transporter. Planta 220:817–825

Walsh KB, Sky RC, Brown SM (2005) The anatomy of the pathway of sucrose unloading within the sugarcane stalk. Func Plant Biol 32:367–374

McCormick AJ, Cramer MD, Watt DA (2009) Supply and demand: sink regulation of sugar accumulation in sugarcane. J Exp Bot 60:357–364

McCormick AJ, Cramer MD, Watt DA (2006) Sink strength regulates photosynthesis in sugarcane. New Phytol 171:759–770

McCormick AJ, Cramer MD, Watt DA (2008) Changes in photosynthetic rates and gene expression of leaves during a source-sink perturbation in sugarcane. Ann Bot 101:89–102

Gutiérrez-Miceli FA, Morales-Torres R, de Jesus Espinosa-Castaneda Y, Rincón-Rosales R, Mentes-Molina J, Oliva-Llaven MA, Dendooven L (2004) Effects of partial defoliation on sucrose accumulation, enzyme activity and agronomic parameters in sugar cane (Saccharum spp.). J Agr Crop Sci 190:256–261

Watt DA, McCormick AJ, Govender C, Carson DL, Cramer MD, Huckett BI, Botha FC (2005) Increasing the utility of genomics in unraveling sucrose accumulation. Field Crop Res 92:149–158

McCormick AJ, Cramer MD, Watt DA (2008) Culm sucrose accumulation promotes physiological decline of mature leaves in ripening sugarcane. Field Crop Res 108:250–258

McCormick AJ, Cramer MD, Watt DA (2008) Differential expression of genes in the leaves of sugarcane in response to sugar accumulation. Trop Plant Biol 1:142–158

McCormick AJ, Cramer MD, Watt DA (2008) Regulation of photosynthesis by sugars in sugarcane leaves. J Plant Physiol 165:1817–1829

De Souza AP, Gaspar M, da Silva EA, Waclawovsky AJ, Ulian EC, Nishiyama MY Jr, dos Santos RV, Teixeira MM, Souza GM, Buckeridge MS (2008) Elevated CO2 increases photosynthesis, biomass and productivity, and modifies gene expression in sugarcane. Plant Cell Environ 31:1116–1127

Ledon AC, Gonzales FAZ (1950) Industrialization of photosynthesis through the use of sugar cane. Proceedings Cuban Sugar Technologist 24:563–72

Wu L, Birch RG (2007) Doubled sugar content in sugarcane plants modified to produce a sucrose isomer. Plant Biotechnol J 5:109–117

Furbank RT, Taylor WC (1995) Regulation of photosynthesis in C3 and C4 plants: a molecular approach. Plant Cell 7:797–807

De Souza AP, Leite DCC, Pattathil S, Hahn MG, Buckeridge MS (2013) Composition and structure of sugarcane cell wall polysaccharides: implications for second-generation of bioethanol production. Bioenerg Res 6:564–579

Chen SF, Mowery RA, Scarlata CJ, Chambliss CK (2007) Compositional analysis of water-soluble materials in corn stover. J Agri Food Chem 55:2912–5918

Bothast RJ, Schlicher MA (2005) Biotechnological process for conversion of corn into ethanol. App Microbiol Biotechnol 67:19–25

Ketiku AO, Oyenuga VA (1972) Changes in the carbohydrate constituents of cassava root-tuber during growth. J Sci Food Agri 23:1451–1456

Adler PR, Sanderson MA, Boateng AA, Weimer PJ, Jun H-JG (2006) Biomass yield and biofuel quality of switchgrass harvested in fall or spring. Agron J 98:1518–1525

Sauter JJ, Cleve B (1994) Storage, mobilization and interrelations of starch, sugars, protein and fat in the ray storage tissue of poplar trees. Trees 8:297–304

Ai J, Tschirner U (2010) Fiber length and pulping characteristics of switchgrass, alfalfa stems, hybrid poplar and willow biomasses. BioresTechnol 101:215–221

Quintero JA, Montoya MI, Sachez OJ, Giraldo OH, Cardona CA (2008) Fuel ethanol productions from sugarcane and corn: comparative analysis for a Colombian case. Energ 33:385–399

Carpenter LT, Pezeshki SR, Shields RFD Jr (2008) Responses of nonstructural carbohydrates to shoot removal and soil moisture treatments in Salix nigra. Trees 22:737–748

Hamberg O, Rumessen JJ, Gudmand-Heyer E (1989) Inhibition of starch absorption by dietary fibre: a comparative study of wheat bran, sugar-beet fibre, and pea fibre. Scandinavian J Gastro 24:103–109

Bar-Peled M, O’Neil MA (2011) Plant nucleotide sugar formation, interconversion, and salvage by sugar recycling. Ann Rev Plant Biol 62:127–155

Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568

McCann M, Carpita N (2000) The cell wall. In: Buchanan BB, Gruissem W, Jones RL (eds) Biochemistry & molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 52–108

Lima DU, Santos MA, Tiné MA, Molle FRD, Buckeridge MS (2001) Patterns of expression of cell wall related genes in sugarcane. Gen Mol Biol 24(1):191–198

Buckeridge MS, Rayon C, Urbanowicz B, Tiné MAS, Carpita NC (2004) Mixed linkage (1-3),(1-4)-beta-D-glucans of grasses. Cereal Chem 81(1):115–127

Becker M, Vincent C, Reid JS (1995) Biosynthesis of (1,3)(1,4)-beta-glucan and (1,3)-beta-glucan in barley (Hordeum vulgare L.). Properties of the membrane-bound glucan synthases. Planta 195:331–338

Buckeridge MS, Vergara CE, Carpita NC (1999) The mechanism of synthesis of a mixed-linkage (1-3),(1-4)beta-D-glucan in maize. Evidence for multiple sites of glucosyl transfer in synthase complex. Plant Physiol 120:1105–1116

Buckeridge MS, Vergara CE, Carpita NC (2001) Insight into multi-site mechanisms of glycosyl transfer in (1-4)beta-D-glycans provided by the cereal mixed linkage (1-3),(1-4)beta-D-glucan synthase. Phytochem 57:1045–1053

Hazen SP, Scott-Craig JS, Walton JD (2002) Cellulose synthase-like genes of rice. Plant Physiol 128:336–340

Doblin MS, Pettolino FA, Wilson SM, Campbell R, Burton RA, Fincher GB, Newbigin E, Bacic A (2009) A barley cellulose synthase-like CSLH gene mediates (1,3;1,4)-b-D-glucan synthesis in transgenic Arabidopsis. PNAS 106:5996–6001

dos Santos WD, Buckeridge MS (2011). Processo para aumentar a digestibilidade da parede celular de uma planta, composição para inibição de enzimas constituintes da via dos fenilpropanóides e uso de moduladores e inibidores químicos. Patent, INPI, Brazil, protocol 020110095739

Mitchell RAC, Dupree P, Shewry PR (2007) A novel bioinformatics approach identifies candidate genes for the synthesis and feruloylation of arabinoxylan. Plant Physiol 144:43–53

Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F (2013) RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotech J 11:709–716

Gomez LD, Steele-King CG, McQueen-Mason SJ (2008) Sustainable liquid biofuels from biomass: the writing's on the walls. New Phytol 178(3):473–85

Xin Z, Watenable N, Lam E (2010) Improving efficiency of cellulosic fermentation via genetic engineering to create “smart plants” for biofuel production. In: Buckeridge MS, Goldman GH (eds) Routes to cellulosic ethanol. Springer, New York, pp 183–199

Ransom C, Balan V, Biswas G, Dale B, Crockett E, Sticklen M (2007) Heterologous Acidothermus cellulolyticus 1,4-b-endoglucanase E1 produced within the corn biomass converts corn stover into glucose. App Biochem Biotechnol 137:207–219

Macedo IC, Seabra JEA, Silva JEAR (2008) Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: the 2005/2006 averages and a prediction for 2020. Biomass Bioenergy 32(7):582–595

Buckeridge MS, De Souza AP, Arundale RA, Anderson-Teixeira K, DeLucia E (2012) Ethanol from sugarcane in Brazil: a “midway” strategy for increasing ethanol production while maximizing environmental benefits. GCB Bioenergy 4:119–126