Sugammadex is effective in reversing rocuronium in the presence of antibiotics

BMC Anesthesiology - Tập 14 - Trang 1-5 - 2014
Mark E Hudson1, Henk Rietbergen2, Jacques E Chelly1
1Department of Anesthesiology, University of Pittsburgh, Pittsburgh, USA
2MSD, Oss, The Netherlands

Tóm tắt

The effectiveness of sugammadex in reversing rocuronium-induced neuromuscular blockade (NMB) in the presence of drugs that may potentiate NMB remains to be fully established. The aim of this post-hoc analysis of data from a Phase III clinical trial (VISTA; NCT00298831) was to investigate the impact of antibiotics on recovery from rocuronium-induced NMB after administration of sugammadex for reversal, and compared the neuromuscular recovery in patients who received antibiotics preoperatively with those who did not. A Phase III, multicenter, open-label study designed to reflect potential use of sugammadex in clinical practice was conducted at 19 sites. Data obtained from patients who received antibiotics were compared with the cohort of patients who underwent the same protocol without antibiotics. Each subject received rocuronium 0.6 mg/kg for muscle relaxation, after which tracheal intubation was performed; patients were also permitted to receive maintenance doses of rocuronium 0.15 mg/kg to maintain the desired level of NMB throughout the operation, as required.. At least 15 min after the last rocuronium dose, patients received sugammadex 4.0 mg/kg for reversal. Neuromuscular monitoring was continued until a train-of-four (TOF) ratio of ≥0.9 was achieved or the anesthetic was discontinued. The presence of antibiotics prior to the administration of sugammadex did not affect the recovery time from rocuronium-induced NMB when sugammadex 4.0 mg/kg was administered at least 15 min after the last dose of rocuronium. In the presence of antibiotics, the geometric mean (95% CI) time from administration of sugammadex 4.0 mg/kg to recovery of the TOF ratio to ≥0.9 was 1.6 (1.4–1.9) min (range: 0.7–10.5 min), compared with 2.0 (1.8–2.3) min (range: 0.7–22.3 min) for patients who did not receive antibiotics. These findings suggest that prophylactic antibiotic use is unlikely to have a major impact on the recovery time from rocuronium-induced NMB with sugammadex reversal. ClinicalTrials.gov Identifier: NCT00298831 .

Tài liệu tham khảo

White PF, Tufanogullari B, Sacan O, Pavlin EG, Viegas OJ, Minkowitz HS, Hudson ME: The effect of residual neuromuscular blockade on the speed of reversal with sugammadex. Anesth Analg. 2009, 108: 846-851. 10.1213/ane.0b013e31818a9932. Blobner M, Eriksson LI, Scholz J, Motsch J, Della Rocca G, Prins ME: Reversal of rocuronium-induced neuromuscular blockade with sugammadex compared with neostigmine during sevoflurane anaesthesia: results of a randomised, controlled trial. Eur J Anaesthesiol. 2010, 27: 874-881. 10.1097/EJA.0b013e32833d56b7. Jones RK, Caldwell JE, Brull SJ, Soto RG: Reversal of profound rocuronium-induced blockade with sugammadex: a randomized comparison with neostigmine. Anesthesiology. 2008, 109: 816-824. 10.1097/ALN.0b013e31818a3fee. Khuenl-Brady KS, Wattwil M, Vanacker BF, Lora-Tamayo JI, Rietbergen H, Alvarez-Gómez JA: Sugammadex provides faster reversal of vecuronium-induced neuromuscular blockade compared with neostigmine: a multicenter, randomized, controlled trial. Anesth Analg. 2010, 110: 64-73. 10.1213/ane.0b013e3181ac53c3. Lemmens HJ, El-Orbany MI, Berry J, Morte JB, Martin G: Reversal of profound vecuronium-induced neuromuscular block under sevoflurane anesthesia: sugammadex versus neostigmine. BMC Anesthesiol. 2010, 10: 15-10.1186/1471-2253-10-15. Chinyanga HM, Stoyka WW: The effect of colymycin M, gentamycin and kanamycin on depression of neuromuscular transmission induced by pancuronium bromide. Can Anaesth Soc J. 1974, 21: 569-579. 10.1007/BF03006018. Ilias W, Steinbereithner K: Potentiation of pancuronium induced neuromuscular blockade by calcium channel blockers in vitro. J Neural Transm. 1985, 64: 285-293. 10.1007/BF01256473. Sekerci S, Tulunay M: Interactions of calcium channel blockers with non-depolarising muscle relaxants in vitro. Anaesthesia. 1996, 51: 140-144. 10.1111/j.1365-2044.1996.tb07701.x. de Gouw NE, Crul JF, Vandermeersch E, Mulier JP, van Egmond J, Van Aken H: Interaction of antibiotics on pipecuronium-induced neuromuscular blockade. J Clin Anesth. 1993, 5: 212-215. 10.1016/0952-8180(93)90017-9. Rocuronium Summary of Product Characteristics. [http://www.medicines.org.uk/emc/medicine/23095/spc] Gilliard V, Delvaux B, Russell K, Dubois PE: Long-lasting potentiation of a single-dose of rocuronium by amikacin: case report. Acta Anaesthesiol Belg. 2006, 57: 157-159. Hasfurther DL, Bailey PL: Failure of neuromuscular blockade reversal after rocuronium in a patient who received oral neomycin. Can J Anaesth. 1996, 43: 617-620. 10.1007/BF03011775. Bom A, Epemolu O, Hope F, Rutherford S, Thomson K: Selective relaxant binding agents for reversal of neuromuscular blockade. Curr Opin Pharmacol. 2007, 7: 298-302. 10.1016/j.coph.2006.11.009. Bland JM, Altman DG: Transformations, means, and confidence intervals. BMJ. 1996, 312: 1079-10.1136/bmj.312.7038.1079. The pre-publication history for this paper can be accessed here:http://www.biomedcentral.com/1471-2253/14/69/prepub