Sufficient synchronization conditions for resistively and memristively coupled oscillators of FitzHugh-Nagumo-type

Robin Lautenbacher1, Bakr Al Beattie2, Karlheinz Ochs2, Ralf Köhl3
1Christian-Albrechts-University Mathematics Seminar, Kiel, Germany
2Ruhr-University Bochum Chair of Digital Communication Systems, Bochum, Germany
3Kiel Nano, Surface and Interface Science, Christian-Albrechts-University, Kiel, Germany

Tóm tắt

Abstract

We study the synchronization behavior of a class of identical FitzHugh-Nagumo-type oscillators under adaptive coupling. We describe the oscillators by a circuit model and we provide a sufficient synchronization condition that relies on the shape of the nonlinear conductance’s (iu)-curve and the connectivity of the adaptive coupling network. The coupling network is allowed to be time-variant, state-dependent and locally adaptive, where we treat memristive coupling elements as a special case. We provide a physical interpretation of synchronization in terms of power dissipation and investigate the sharpness of our condition.

Từ khóa


Tài liệu tham khảo

Abernot M, Gil T, Jiménez M, Núñez J, Avellido MJ, Linares-Barranco B, Gonos T, Hardelin T, Todri-Sanial A. Digital implementation of oscillatory neural network for image recognition applications. Front Neurosci. 2021. https://doi.org/10.3389/fnins.2021.713054.

Ahmed I, Chiu PW, Moy W, Kim CH. A probabilistic compute fabric based on coupled ring oscillators for solving combinatorial optimization problems. IEEE J Solid State Circuits. 2021;56(9):2870–80. https://doi.org/10.1109/JSSC.2021.3062821.

Aminzare Z, Dey B, Davison EN, Leonard NE. Cluster synchronization of diffusively coupled nonlinear systems: A contraction-based approach. J Nonlinear Sci. 2020. https://doi.org/10.1007/s00332-018-9457-y.

Aminzare Z, Sontag E. Synchronization of diffusively-connected nonlinear systems: Results based on contractions with respect to general norms. IEEE Trans Netw Sci Eng. 2014;1:91–106.

Aminzare Z, Srivastava V. Stochastic synchronization in nonlinear network systems driven by intrinsic and coupling noise. Biol Cybern. 2022. https://doi.org/10.1007/s00422-022-00928-7.

Arbib M, Amari S, Arbib P. The handbook of brain theory and neural networks. A Bradford book. Cambridge: MIT Press; 2003.

Barbalat I. Systems d’equations differentielles d’oscillations nonlinéaires. Revue Roumaine Math Pures Appl. 1959;4:267–70.

Biggs N. Algebraic graph theory, 2 edn. Cambridge Mathematical Library. Cambridge University Press; 1974. https://doi.org/10.1017/CBO9780511608704

Bullo F. Contraction theory for dynamical systems, 1.1 edn. Kindle Direct Publishing; 2023. https://fbullo.github.io/ctds

Chou J, Bramhavar S, Ghosh S, Herzog W. Analog coupled oscillator based weighted ising machine. Sci Rep. 2019;9(1):14786. https://doi.org/10.1038/s41598-019-49699-5.

Chua L. Memristor-the missing circuit element. IEEE Trans Circuits Theor. 1971;18(5):507–19. https://doi.org/10.1109/TCT.1971.1083337.

Chua L, Kang SM. Memristive devices and systems. Proc IEEE. 1976;64(2):209–23. https://doi.org/10.1109/PROC.1976.10092.

Csaba G, Porod W. Coupled oscillators for computing: A review and perspective. Appl Phys Rev. 2020;7(1). https://doi.org/10.1063/1.5120412.

Davison EN, Dey B, Leonard NE. Synchronization bound for networks of nonlinear oscillators. In: 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2016; pp. 1110–1115. https://doi.org/10.1109/ALLERTON.2016.7852359

DeLellis P, diBernardo M, Garofalo F. Synchronization of complex networks through local adaptive coupling. Chaos Interdiscip J Nonlinear Sci. 2008;18(3): 037110. https://doi.org/10.1063/1.2944236.

DeLellis P, diBernardo M, Garofalo F. Decentralized adaptive control for synchronization and consensus of complex networks, pp. 27–42. Springer Berlin Heidelberg, Berlin, Heidelberg; 2009. https://doi.org/10.1007/978-3-642-03199-1_2.

Delellis P, Di Bernardo M, Russo G. On quad, lipschitz, and contracting vector fields for consensus and synchronization of networks. Circ Syst I: Regul Papers, IEEE Trans. 2011;58:576–83. https://doi.org/10.1109/TCSI.2010.2072270.

DeLellis P, diBernardo M, Garofalo F. Novel decentralized adaptive strategies for the synchronization of complex networks. Automatica. 2009;45(5):1312–8. https://doi.org/10.1016/j.automatica.2009.01.001.

Demidovic BP. Dissipativity of a nonlinear system of differential equations. Uspekhi Matematicheskikh Nauk. 1961;16:216.

Dörfler F, Bullo F. On the critical coupling for kuramoto oscillators. SIAM J Appl Dyn Syst. 2011;10(3):1070–99. https://doi.org/10.1137/10081530X.

Dörfler F, Bullo F. Synchronization in complex networks of phase oscillators: a survey. Automatica. 2014. https://doi.org/10.1016/j.automatica.2014.04.012.

Duan S, Hu X, Dong Z, Wang L, Mazumder P. Memristor-based cellular nonlinear/neural network: design, analysis, and applications. IEEE Trans Neural Netw Learn Syst. 2015;26(6):1202–13. https://doi.org/10.1109/TNNLS.2014.2334701.

Feketa P, Schaum A, Meurer T. Synchronization and multicluster capabilities of oscillatory networks with adaptive coupling. IEEE Trans Autom Control. 2021;66(7):3084–96. https://doi.org/10.1109/TAC.2020.3012528.

Fiedler M. Algebraic connectivity of graphs. Czechoslov Math J. 1973;23:298–305.

FitzHugh R. Impulses and physiological states in theoretical models of nerve membrane. Biophys J. 1961;1(6):445–66. https://doi.org/10.1016/S0006-3495(61)86902-6.

Ignatov M, Hansen M, Ziegler M, Kohlstedt H. Synchronization of two memristively coupled van der Pol oscillators. Appl Phys Lett. 2016;108(8). https://doi.org/10.1063/1.4942832.

Jafarpour S, Cisneros-Velarde P, Bullo F. Weak and semi-contraction for network systems and diffusively coupled oscillators. IEEE Trans Autom Control. 2022;67(3):1285–300. https://doi.org/10.1109/TAC.2021.3073096.

Jafarpour S, Davydov A, Bullo F. Non-euclidean contraction theory for monotone and positive systems. IEEE Trans Autom Control. 2023;68(9):5653–60. https://doi.org/10.1109/TAC.2022.3224094.

Jin X, Wu YG, Lü HP, Xu C. Synchronization dynamics of phase oscillators with generic adaptive coupling. Commun Theor Phys. 2023;75(4). https://doi.org/10.1088/1572-9494/acba84.

Johnson AP, Liu J, Millard AG, Karim S, Tyrrell AM, Harkin J, Timmis J, McDaid LJ, Halliday DM. Homeostatic fault tolerance in spiking neural networks: A dynamic hardware perspective. IEEE Trans Circuits Syst I Regul Pap. 2018;65(2):687–99. https://doi.org/10.1109/TCSI.2017.2726763.

Joshi SK, Sen S, Kar IN. Synchronization of coupled benchmark oscillators: analysis and experiments. Int J Dyn Control. 2022;10:577–97. https://doi.org/10.1007/s40435-021-00827-y.

Korneev I, Semenov V, Vadivasova T. Synchronization of periodic self-oscillators interacting via memristor-based coupling. Int J Bifurc Chaos. 2020;30:2050096. https://doi.org/10.1142/S0218127420500960.

Korneev IA, Ramazanov IR, Semenov VV, Slepnev AV, Vadivasova TE. Synchronization of traveling waves in memristively coupled ensembles of fitzhugh-nagumo neurons with periodic boundary conditions. Frontiers in Physics. 2022. https://doi.org/10.3389/fphy.2022.886476.

Li H, Fang JA, Li X, Rutkowski L, Huang T. Event-triggered synchronization of multiple discrete-time markovian jump memristor- based neural networks with mixed mode-dependent delays. IEEE Trans Circuits Syst I Regul Pap. 2022;69(5):2095–107. https://doi.org/10.1109/TCSI.2022.3149535.

Li M, Hong Q, Wang X. Memristor-based circuit implementation of competitive neural network based on online unsupervised hebbian learning rule for pattern recognition. Neural Comput Appl. 2022;34(1):319–31. https://doi.org/10.1007/s00521-021-06361-4.

Lohmiller W, Slotine JJE. On contraction analysis for non-linear systems. Autom. 1998;34:683–96.

Ma J, Xu W, Zhou P, Zhang G. Synchronization between memristive and initial-dependent oscillators driven by noise. Phys A Stat Mech Appl. 2019;536:122598. https://doi.org/10.1016/j.physa.2019.122598

Michaelis D, Ochs K, Jenderny S. A memristive circuit for gait pattern classification based on self-organized axon growth. In: 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 162–165. 2021. https://doi.org/10.1109/MWSCAS47672.2021.9531806

Nagumo J, Arimoto S, Yoshizawa S. An active pulse transmission line simulating nerve axon. Proc IRE. 1962;50(10):2061–70. https://doi.org/10.1109/JRPROC.1962.288235.

Ndow FK, Aminzare Z. Global synchronization analysis of non-diffusively coupled networks through contraction theory (2023). Preprint, https://arxiv.org/abs/2307.00030

Ochs K, AlBeattie B, Jenderny S. An ising machine solving max-cut problems based on the circuit synthesis of the phase dynamics of a modified kuramoto model. In: 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 982–985 (2021). https://doi.org/10.1109/MWSCAS47672.2021.9531734

Ochs K, Michaelis D, Jenderny S. Synthesis of an equivalent circuit for spike-timing-dependent axon growth: What fires together now really wires together. IEEE Trans Circuits Syst I Regul Pap. 2021;68(9): 3656–3667. https://doi.org/10.1109/TCSI.2021.3093172

Ochs K, Michaelis D, Solan E, Feketa P, Schaum A, Meurer T. Synthesis, design, and synchronization analysis of coupled linear electrical networks. IEEE Trans Circuits Syst I Regul Pap. 2020;67(12):4521–32. https://doi.org/10.1109/TCSI.2020.3002672.

Pecora LM, Carroll TL. Master stability functions for synchronized coupled systems. Phys Rev Lett. 1998;80:2109–12. https://doi.org/10.1103/PhysRevLett.80.2109.

Petrovas A, Lisauskas S, Slepikas A. Electronic model of fitzhugh-nagumo neuron. Elektronika ir Elektrotechnika. 2012;122(6):117–20. https://doi.org/10.5755/j01.eee.122.6.1835. https://eejournal.ktu.lt/index.php/elt/article/view/1835

Pogromski AY. Passivity based design of synchronizing systems. Int J Bifurc Chaos. 1998;8:295–319.

Pogromsky A, Glad T, Nijmeijer H. On diffusion driven oscillations in coupled dynamical systems. International Journal of Bifurcation and Chaos. 1999;9:629–44. https://doi.org/10.1142/S0218127499000444.

Ringkvist M, Zhou Y. On the dynamical behaviour of fitzhugh-nagumo systems: revisited. Nonlinear Anal Theory Methods Appl Nonlinear Anal-Theor Meth APP. 2009;71:2667–87. https://doi.org/10.1016/j.na.2009.01.149.

Steur E, Tyukin IY, Nijmeijer H. Semi-passivity and synchronization of diffusively coupled neuronal oscillators. Physica D. 2009;238:2119–28.

Strukov DB, Snider GS, Stewart DR, Williams RS. The missing memristor found. Nature. 2008;453:80–3. https://doi.org/10.1038/nature06932.

Sun Z. A gathering of barbalat’s lemmas and their (unsung) cousins. 2023. https://doi.org/10.48550/arXiv.2301.00466

Tao G. A simple alternative to the barbalat lemma. IEEE Trans Autom Control. 1997;42(5):698. https://doi.org/10.1109/9.580878.

Wang C, Lv M, Alsaedi A, Ma J. Synchronization stability and pattern selection in a memristive neuronal network. Chaos Interdiscipl J Nonlinear Sci. 2017;27(11):113108. https://doi.org/10.1063/1.5004234.

Wang X, Zheng Z, Xu C. Explosive synchronization in phase oscillator populations with attractive and repulsive adaptive interactions. Chaos, Solitons Fractals. 2023;170: 113351.https://doi.org/10.1016/j.chaos.2023.113351. www.sciencedirect.com/science/article/pii/S0960077923002527

Willems JC. Dissipative dynamical systems part I: general theory. Arch Ration Mech Anal. 1972;45(5):321–51. https://doi.org/10.1007/BF00276493.

Wu CW, Chua L. Synchronization in an array of linearly coupled dynamical systems. IEEE Trans Circ Syst I: Fundam Theory and Appl. 1995;42(8):430–47. https://doi.org/10.1109/81.404047.

Zhang Y, Wang X, Friedman EG. Memristor-based circuit design for multilayer neural networks. IEEE Trans Circuits Syst I Regul Pap. 2018;65(2):677–86. https://doi.org/10.1109/TCSI.2017.2729787.