Sufficient Stochastic Maximum Principle in a Regime-Switching Diffusion Model
Tóm tắt
We prove a sufficient stochastic maximum principle for the optimal control of a regime-switching diffusion model. We show the connection to dynamic programming and we apply the result to a quadratic loss minimization problem, which can be used to solve a mean-variance portfolio selection problem.
Tài liệu tham khảo
Bismut, J.-M.: Conjugate convex functions in optimal stochastic control. J. Math. Anal. Appl. 44(2), 384–404 (1973)
Elliott, R.J., Siu, T.K., Badescu, A.: On mean-variance portfolio selection under a hidden Markovian regime-switching model. Econ. Model. 27, 678–686 (2010)
Framstad, N.C., Øksendal, B., Sulem, A.: Sufficient stochastic maximum principle for the optimal control of jump diffusions and applications to finance. J. Optim. Theory Appl. 121(1), 77–98 (2004)
Protter, P.E.: Stochastic Integration and Differential Equations, 2nd edn. Springer, New York (2005)
Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes and Martingales: Volume 2, Itô Calculus. Cambridge University Press, Cambridge (2000)
Zhou, X.Y., Yin, G.: Markowitz’s mean-variance portfolio selection with regime switching: a continuous-time model. SIAM J. Control Optim. 42(4), 1466–1482 (2003)