Sufficient Conditions for Strong Starlikeness

Bulletin of the Iranian Mathematical Society - Tập 47 - Trang 1453-1475 - 2020
Kanika Sharma1, Nak Eun Cho2, V. Ravichandran3
1Department of Mathematics, Atma Ram Sanatan Dharma College, University of Delhi, Delhi, India
2Department of Applied Mathematics, Pukyong National University, Busan, South Korea
3Department of Mathematics, National Institute of Technology, Tiruchirappalli, India

Tóm tắt

Let p be an analytic function defined on the open unit disc $$\mathbb {D}$$ with $$p(0)=1$$ and $$0< \alpha \le 1$$ . The conditions on complex valued functions C, D, and E are obtained for p to be subordinate to $$((1+z)/(1-z))^{\alpha }$$ when $$C(z) z^{2}p''(z)+D(z)zp'(z) + E(z)p(z)=0$$ . Sufficient conditions for confluent (Kummer) hypergeometric function and generalized and normalized Bessel function of the first kind of complex order to be subordinate to $$((1+z)/(1-z))^{\alpha }$$ are obtained as applications. The conditions on $$\alpha $$ and $$\beta $$ are derived for p to be subordinate to $$((1+z)/(1-z))^{\alpha }$$ when $$1+\beta zp'(z)/p^{n}(z)$$ with $$n=1,2$$ is subordinate to $$1+4z/3+2z^{2}/3=:\varphi _{CAR}(z)$$ . Similar problems were investigated for $${{\,\mathrm{Re}\,}}p(z)>0$$ when the function $$p(z)+\beta zp'(z)/p^{n}(z)$$ with $$n=0,2$$ is subordinate to $$\varphi _{CAR}(z)$$ . The condition on $$\beta $$ is determined for p to be subordinate to $$((1+z)/(1-z))^{\alpha }$$ when $$p(z)+\beta zp'(z)/p^{n}(z)$$ with $$n=0,1,2$$ is subordinate to $$((1+z)/(1-z))^{\alpha }$$ .

Tài liệu tham khảo

Acharya, A.P.: Univalence criteria for analytic functions and applications to hypergeometric functions, Ph.D. Diss., University of Würzburg (1997) Ali, R.M., Cho, N.E., Jain, N.K., Ravichandran, V.: Radii of starlikeness and convexity of functions defined by subordination with fixed second coefficients. Filomat 26, 553–561 (2012) Ali, R.M., Cho, N.E., Ravichandran, V., Sivaprasad Kumar, S.: Differential subordination for functions associated with the lemniscate of Bernoulli. Taiwan. J. Math. 16(3), 1017–1026 (2012) Ali, R.M., Mondal, S.R., Ravichandran, V.: On the Janowski convexity and starlikeness of the confluent hypergeometric function. Bull. Belg. Math. Soc. Simon Stevin 22(2), 227–250 (2015) Baricz, Á.: Generalized Bessel Functions of the First Kind. Lecture Notes in Mathematics, vol. 1994. Springer, Berlin (2010) Baricz, Á.: Applications of the admissible functions method for some differential equations. Pure Math. Appl. 13(4), 433–440 (2002) Baricz, Á.: Geometric properties of generalized Bessel functions. Publ. Math. Debrecen 73(1–2), 155–178 (2008) Bohra, N., Ravichandran, V.: On confluent hypergeometric functions and generalized Bessel functions. Anal. Math. 43(4), 533–545 (2017) Cho, N.E., Kwon, O.S., Ravichandran, V.: Coefficient, distortion and growth inequalities for certain close-to-convex functions. J. Inequal. Appl. 2011, 100 (2011) Goodman, A.W.: Univalent Functions, vol. II. Mariner, Tampa (1983) Janowski, W.: Extremal problems for a family of functions with positive real part and for some related families. Ann. Polon. Math. 23, 159–177 (1970/1971) Lee, S.K., Ravichandran, V., Supramaniam, S.: Close-to-convexity and starlikeness of analytic functions. Tamkang J. Math. 46(2), 111–119 (2015) Ma, W.C., Minda, D.: A unified treatment of some special classes of univalent functions. In: Proceedings of the Conference on Complex Analysis (Tianjin, 1992), pp. 157–169. Conf. Proc. Lecture Notes Anal., vol. I. Int. Press, Cambridge (1992) Miller, S.S., Mocanu, P.T.: Differential subordinations and inequalities in the complex plane. J. Differ. Equ. 67(2), 199–211 (1987) Miller, S.S., Mocanu, P.T.: The theory and applications of second-order differential subordinations. Studia Univ. Babeş-Bolyai Math. 34(4), 3–33 (1989) Miller, S.S., Mocanu, P.T.: Differential Subordinations, Monographs and Textbooks in Pure and Applied Mathematics, vol. 225. Dekker, New York (2000) Paprocki, E., Sokół, J.: The extremal problems in some subclass of strongly starlike functions. Zeszyty Nauk. Politech. Rzeszowskiej Mat. No. 20, 89–94 (1996) Polatoğlu, Y., Bolcal, M.: Some radius problem for certain families of analytic functions. Turk. J. Math. 24(4), 401–412 (2000) Ravichandran, V., Darus, M., Seenivasagan, N.: On a criteria for strong starlikeness. Aust. J. Math. Anal. Appl. 2(1), Art. 6, 1–12 (2005) Ravichandran, V., Sharma, K.: Sufficient conditions for starlikeness. J. Korean Math. Soc. 52(4), 727–749 (2015) Robertson, M.S.: Certain classes of starlike functions. Mich. Math. J. 32(2), 135–140 (1985) Ruscheweyh, St., Singh, V.: On the order of starlikeness of hypergeometric functions. J. Math. Anal. Appl. 113(1), 1–11 (1986) Shanmugam, T.N.: Convolution and differential subordination. Int. J. Math. Math. Sci. 12(2), 333–340 (1989) Sharma, K., Jain, N.K., Ravichandran, V.: Starlike functions associated with a cardioid. Afr. Mat. (Springer) 27(5), 923–939 (2016) Sharma, K., Ravichandran, V.: Applications of subordination theory to starlike functions. Bull. Iran. Math. Soc. 42(3), 761–777 (2016) Sharma, K., Ravichandran, V.: Sufficient conditions for Janowski starlike functions. Stud. Univ. Babeş-Bolyai Math. 61(1), 63–76 (2016) Sivaprasad Kumar, S., Kumar, V., Ravichandran, V., Cho, N.E.: Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli. J. Inequal. Appl. 2013, Art. 176 (2013) Sokół, J.: Radius problems in the class \(\cal{SL}\). Appl. Math. Comput. 214(2), 569–573 (2009) Temme, N.M.: Special Functions. Wiley, New York (1996)