Succinate accumulation drives ischaemia-reperfusion injury during organ transplantation

Nature Metabolism - Tập 1 Số 10 - Trang 966-974
Jack L. Martin1, Ana S.H. Costa2, Anja V. Gruszczyk1, Timothy E. Beach1, Fay M. Allen3, Hiran A. Prag3, Elizabeth C. Hinchy3, Krishnaa T. Mahbubani1, Mazin Hamed1, Laura Tronci2, Efterpi Nikitopoulou2, Andrew M. James3, Thomas Krieg4, Alan J. Robinson3, Margaret M. Huang3, Stuart T. Caldwell5, Angela Logan3, Laura Pala5, Richard C. Hartley5, Christian Frezza2, Kourosh Saeb‐Parsy1, Michael P. Murphy4
1Department of Surgery and Cambridge NIHR Biomedical Research Centre, Biomedical Campus, University of Cambridge, Cambridge, UK
2MRC Cancer Unit, University of Cambridge, Hutchison/MRC Research Centre, Cambridge, UK
3MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
4Department of Medicine, University of Cambridge, Cambridge, UK
5School of Chemistry, University of Glasgow, Glasgow, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Jahania, M. S., Sanchez, J. A., Narayan, P., Lasley, R. D. & Mentzer, R. M. Jr. Heart preservation for transplantation: principles and strategies. Ann. Thorac. Surg. 68, 1983–1987 (1999).

Southard, J. H. & Belzer, F. O. Organ preservation. Annu. Rev. Med. 46, 235–247 (1995).

Chouchani, E. T. et al. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab. 23, 254–263 (2016).

Chouchani, E. T. et al. Ischaemic accumulation of succinate controls reperfusion injury through mitochondrial ROS. Nature 515, 431–435 (2014).

Pagani, F. D. Use of heart donors following circulatory death: a viable addition to the heart donor pool. J. Am. Coll. Cardiol. 73, 1460–1462 (2019).

Johnson, R. J., Bradbury, L. L., Martin, K. & Neuberger, J. Organ donation and transplantation in the UK-the last decade: a report from the UK national transplant registry. Transplantation 97, S1–S27 (2014).

Chew, H. C. et al. Outcomes of donation after circulatory death heart transplantation in australia. J. Am. Coll. Cardiol. 73, 1447–1459 (2019).

Dhital, K. K. et al. Adult heart transplantation with distant procurement and ex-vivo preservation of donor hearts after circulatory death: a case series. Lancet 385, 2585–2591 (2015).

Nasralla, D. et al. A randomized trial of normothermic preservation in liver transplantation. Nature 557, 50–56 (2018).

Coffey, J. C. et al. The influence of functional warm ischemia time on DCD liver transplant recipients’ outcomes. Clin. Transplant. 31, e13068 (2017).

Blok, J. J. et al. Longterm results of liver transplantation from donation after circulatory death. Liver Transplant. 22, 1107–1114 (2016).

Eltzschig, H. K. & Eckle, T. Ischemia and reperfusion—from mechanism to translation. Nat. Med. 17, 1391–1401 (2011).

Liu, F. & Kang, S. M. Heterotopic heart transplantation in mice. J. Vis. Exp. 6, 238 (2007).

Niimi, M. The technique for heterotopic cardiac transplantation in mice: experience of 3000 operations by one surgeon. J. Heart Lung Transplant. 20, 1123–1128 (2001).

Zhang, Q. et al. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464, 104–107 (2010).

Nakahira, K. et al. Circulating mitochondrial DNA in patients in the ICU as a marker of mortality: derivation and validation. PLoS Med. 10, e1001577 (2013).

Ehinger, J. K. et al. Cell-permeable succinate prodrugs bypass mitochondrial complex I deficiency. Nat. Commun. 7, 12317 (2016).

Valls-Lacalle, L. et al. Selective inhibition of succinate dehydrogenase in reperfused myocardium with intracoronary malonate reduces infarct size. Sci. Rep. 8, 2442 (2018).

Valls-Lacalle, L. et al. Succinate dehydrogenase inhibition with malonate during reperfusion reduces infarct size by preventing mitochondrial permeability transition. Cardiovasc. Res. 109, 374–384 (2016).

Bundgaard, A. et al. Metabolic adaptations during extreme anoxia in the turtle heart and their implications for ischemia-reperfusion injury. Sci. Rep. 9, 2850 (2019).

Zhang, J. et al. Accumulation of succinate in cardiac ischemia primarily occurs via canonical krebs cycle activity. Cell Rep. 23, 2617–2628 (2018).

Dare, A. J. et al. The mitochondria-targeted anti-oxidant MitoQ decreases ischemia-reperfusion injury in a murine syngeneic heart transplant model. J. Heart Lung Transplant. 34, 1471–1480 (2015).

Mackay, G. M., Zheng, L., van den Broek, N. J. & Gottlieb, E. Analysis of cell metabolism using LC-MS and isotope tracers. Meth. Enzymol. 561, 171–196 (2015).

Strehler, B. L. in Methods in Enzymatic Analysis (ed. Bergmeyer, U.) 2112–2126 (Academic Press, 1974).

Passonneau, J. V. & Lauderdale, V. R. A comparison of three methods of glycogen measurement in tissues. Anal. Biochem. 60, 405–412 (1974).

Santos, J. H., Meyer, J. N., Mandavilli, B. S. & Van Houten, B. Quantitative PCR-based measurement of nuclear and mitochondrial DNA damage and repair in mammalian cells. Methods Mol. Biol. 314, 183–199 (2006).

Ritchie, M. E. et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nuc. Acids Res. 43, e47 (2015).