Succinate Production with Metabolically Engineered Escherichia coli Using Elephant Grass Stalk (Pennisetum purpureum) Hydrolysate as Carbon Source
Tóm tắt
Từ khóa
Tài liệu tham khảo
Song, H., Lee, S.Y.: Production of succinic acid by bacterial fermentation. Enzym. Microb. Technol. 39, 352–361 (2006)
Werpy, T., Petersen, G., Aden, A., Bozell, J., Holladay, J., White, J., Manheim, A., Eliot, D., Lasure, L., Jones, S.: Top Value Added Chemicals from Biomass. Volume 1-Results of Screening for Potential Candidates from Sugars and Synthesis Gas, Department of Energy, Washington DC, (2004)
Willke, T., Vorlop, K.D.: Industrial bioconversion of renewable resources as an alternative to conventional chemistry. Appl. Microbiol. Biotechnol. 66, 131–142 (2004)
Menegol, D., Scholl, A.L., Fontana, R.C., Dillon, A.J.P., Camassola, M.: Increased release of fermentable sugars from elephant grass by enzymatic hydrolysis in the presence of surfactants. Energy Convers. Manag. 88, 1252–1256 (2014)
Xie, X.-M., Zhang, X.-Q., Dong, Z.-X., Guo, H.-R.: Dynamic changes of lignin contents of MT-1 elephant grass and its closely related cultivars. Biomass Bioenergy 35, 1732–1738 (2011)
Zhu, X.-G., Long, S.P., Ort, D.R.: What is the maximum efficiency with which photosynthesis can convert solar energy into biomass. Curr. Opin. Biotechnol. 19, 153–159 (2008)
Lee, P.C., Lee, S.Y., Chang, H.N.: Succinic acid production by Anaerobiospirillum succiniciproducens ATCC 29305 growing on galactose, galactose/glucose, and galactose/lactose. J. Microbiol. Biotechnol. 18, 1792–1796 (2008)
Samuelov, N., Lamed, R., Lowe, S., Zeikus, J.: Influence of CO2–HCO3—levels and pH on growth, succinate production, and enzyme activities of Anaerobiospirillum succiniciproducens. Appl. Environ. Microbiol. 57, 3013–3019 (1991)
Olajuyin, A.M., Yang, M., Liu, Y., Mu, T., Tian, J., Adaramoye, O.A., Xing, J.: Efficient production of succinic acid from Palmaria palmata hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 214, 653–659 (2016)
Jantama, K., Zhang, X., Moore, J., Shanmugam, K., Svoronos, S., Ingram, L.: Eliminating side products and increasing succinate yields in engineered strains of Escherichia coli C. Biotechnol. Bioeng. 101, 881–893 (2008)
Lin, H., Bennett, G.N., San, K.-Y.: Metabolic engineering of aerobic succinate production systems in Escherichia coli to improve process productivity and achieve the maximum theoretical succinate yield. Metab. Eng. 7, 116–127 (2005)
Wang, D., Li, Q., Yang, M., Zhang, Y., Su, Z., Xing, J.: Efficient production of succinic acid from corn stalk hydrolysates by a recombinant Escherichia coli with ptsG mutation. Process. Biochem. 46, 365–371 (2011)
Sánchez, A.M., Bennett, G.N., San, K.-Y.: Novel pathway engineering design of the anaerobic central metabolic pathway in Escherichia coli to increase succinate yield and productivity. Metab. Eng. 7, 229–239 (2005)
Clark, D.P.: The fermentation pathways of Escherichia coli. FEMS Microbiol. Lett. 63, 223–234 (1989)
Bai, B., Zhou, J.M., Yang, M.H., Liu, Y.L., Xu, X.H., Xing, J.M.: Efficient production of succinic acid from macroalgae hydrolysate by metabolically engineered Escherichia coli. Bioresour. Technol. 185, 56–61 (2015)
Lin, H., Bennett, G.N., San, K.-Y.: Effect of carbon sources differing in oxidation state and transport route on succinate production in metabolically engineered Escherichia coli. J. Ind. Microbiol. Biotechnol. 32, 87–93 (2005)
Noltmann, E.A.: Aldose-ketose isomerases. In: The Enzymes, pp. 271–354. Elsevier, Amsterdam (1972)
Hansen, T., Oehlmann, M., Schönheit, P.: Novel type of glucose-6-phosphate isomerase in the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183, 3428–3435 (2001)
Schönheit, P., Schäfer, T.: Metabolism of hyperthermophiles. World J. Microb. Biotechnol. 11, 26–57 (1995)
Selig, M., Xavier, K.B., Santos, H., Schönhei, P.: Comparative analysis of Embden-Meyerhof and Entner-Doudoroff glycolytic pathways in hyperthermophilic archaea and the bacterium Thermotoga. Arch Microbiol. 167, 217–232 (1997)
Hansen, T., Schönheit, P.: Escherichia coli phosphoglucose isomerase can be substituted by members of the PGI family, the PGI/PMI family, and the cPGI family. FEMS Microbiol. Lett. 250, 49–53 (2005)
Müller-Hartmann, H., Müller-Hill, B.: The side-chain of the amino acid residue in position 110 of the Lac repressor influences its allosteric equilibrium. J. Mol. Biol. 257, 473–478 (1996)
Okada, T., Ueyama, K., Niiya, S., Kanazawa, H., Futai, M., Tsuchiya, T.: Role of inducer exclusion in preferential utilization of glucose over melibiose in diauxic growth of Escherichia coli. J. Bacteriol. 146, 1030–1037 (1981)
Narang, A., Pilyugin, S.S.: Bacterial gene regulation in diauxic and non-diauxic growth. J. Theor. Biol. 244, 326–348 (2007)
Hermsen, R., Okano, H., You, C., Werner, N., Hwa, T.: A growth-rate composition formula for the growth of E. coli on co-utilized carbon substrates. Mol. Syst. Biol. 11, 801 (2015)
Vemuri, G.N., Eiteman, M.A., Altman, E.: Effects of growth mode and pyruvate carboxylase on succinic acid production by metabolically engineered strains of Escherichia coli. Appl. Environ. Microbiol. 68, 1715–1727 (2002)
Cheng, K.K., Zhao, X.B., Zeng, J., Zhang, J.A.: Biotechnological production of succinic acid: current state and perspectives. Biofuels Bioprod. Biorefin. 6, 302–318 (2012)
Zhu, X., Tan, Z., Xu, H., Chen, J., Tang, J., Zhang, X.: Metabolic evolution of two reducing equivalent-conserving pathways for high-yield succinate production in Escherichia coli. Metab. Eng. 24, 87–96 (2014)