Successive multivariate variational mode decomposition based on instantaneous linear mixing model
Tài liệu tham khảo
Chen, 2019, Adaptive chirp mode pursuit: algorithm and applications, Mech. Syst. Signal Process., 116, 566, 10.1016/j.ymssp.2018.06.052
Iatsenko, 2015, Nonlinear mode decomposition: a noise-robust, adaptive decomposition method, Phys. Rev. E, 92, 032916, 10.1103/PhysRevE.92.032916
Crochiere, 1980, A weighted overlap-add method of short-time Fourier analysis/synthesis, IEEE Trans. Acoust., 28, 99, 10.1109/TASSP.1980.1163353
Gilles, 2013, Empirical wavelet transform, IEEE Trans. Signal Process., 61, 3999, 10.1109/TSP.2013.2265222
Singh, 2018, An empirical wavelet transform based approach for multivariate data processing application to cardiovascular physiological signals, Bio-Algorithms Med-Syst., 14, 20180030, 10.1515/bams-2018-0030
Lahmiri, 2014, Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains, Healthc. Technol. Lett., 1, 104, 10.1049/htl.2014.0073
Wang, 2018, Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 101, 292, 10.1016/j.ymssp.2017.08.038
Huang, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London Ser.A, 454, 903, 10.1098/rspa.1998.0193
Chen, 2017, Nonlinear chirp mode decomposition: a variational method, IEEE Trans. Signal Process., 65, 6024, 10.1109/TSP.2017.2731300
Dragomiretskiy, 2014, Variational mode decomposition, IEEE Trans. Signal Process., 62, 531, 10.1109/TSP.2013.2288675
Wu, 2009, Ensemble empirical mode decomposition: anoise-assisted data analysis method, Adv. Adapt. Data Anal., 01, 1, 10.1142/S1793536909000047
Yeh, 2010, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Adv. Adapt. Data Anal., 2, 22, 10.1142/S1793536910000422
Frei, 2007, Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals, Proc. R. Soc. A, 463, 321, 10.1098/rspa.2006.1761
Wang, 2015, Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system, Mech. Syst. Signal Process., 60–61, 243, 10.1016/j.ymssp.2015.02.020
Li, 2018, Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations, Renew. Energy, 116, 55, 10.1016/j.renene.2016.12.013
Li, 2019, Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition, Mech. Syst. Signal Process., 120, 83, 10.1016/j.ymssp.2018.10.016
Ni, 2018, Time-varying system identification using variational mode decomposition, Struct. Control Health Monit., 25, e2175, 10.1002/stc.2175
Bagheri, 2018, Structural system identification based on variational mode decomposition, J. Sound Vib., 417, 182, 10.1016/j.jsv.2017.12.014
Nazari, 2020, Successive variational mode decomposition, Signal Process., 174, 107610, 10.1016/j.sigpro.2020.107610
Stanković, 2020, On the decomposition of multichannel nonstationary multicomponent signals, Signal Process., 167, 107261, 10.1016/j.sigpro.2019.107261
Kameoka, 2009, Complex NMF: a new sparse representation for acoustic signals, 3437
2007, Blind Speech Separation
Chen, 2018, Nonstationary signal denoising using an envelope-tracking filter, IEEE/ASME Trans. Mechatron., 23, 2004, 10.1109/TMECH.2017.2786265
ur Rehman, 2019, Multivariate variational mode decomposition, IEEE Trans. Signal Process., 67, 6039, 10.1109/TSP.2019.2951223
Rehman, 2009, Bivariate EMD-based image fusion, 57
Rehman, 2010, Multivariate empirical mode decomposition, Proc. R. Soc. A, 466, 1291, 10.1098/rspa.2009.0502
Lang, 2018, Fast multivariate empirical mode decomposition, IEEE Access, 6, 65521, 10.1109/ACCESS.2018.2877150
Lang, 2018, Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition, Ind. Eng. Chem. Res., 57, 954, 10.1021/acs.iecr.7b03042
Lang, 2020, Direct multivariate intrinsic time-scale decomposition for oscillation monitoring, IEEE Trans. Control Syst. Technol., 28, 2608, 10.1109/TCST.2019.2940374
Chen, 2021, Multivariate intrinsic chirp mode decomposition, Signal Process., 183, 108009, 10.1016/j.sigpro.2021.108009
Stanković, 2018, Time-frequency decomposition of multivariate multicomponent signals, Signal Process., 142, 468, 10.1016/j.sigpro.2017.08.001
Brajović, 2020, Decomposition of multichannel multicomponent nonstationary signals by combining the eigenvectors of autocorrelation matrix using genetic algorithm, Digit Signal Process, 102, 102738, 10.1016/j.dsp.2020.102738
Zhang, 2008, A new mixing matrix identification algorithm for underdetermined blind source separation, 268
Belouchrani, 1997, A blind source separation technique using second-order statistics, IEEE Trans. Signal Process., 45, 434, 10.1109/78.554307
Antoni, 2013, A study and extension of second-order blind source separation to operational modal analysis, J. Sound Vib., 332, 1079, 10.1016/j.jsv.2012.09.016
Yu, 2014, Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation, Mech. Syst. Signal Process., 45, 302, 10.1016/j.ymssp.2013.11.018
Zhou, 2018, Output-only modal estimation using sparse component analysis and density-based clustering algorithm, Measurement, 126, 120, 10.1016/j.measurement.2018.05.002
Nazari, 2018, Variational mode extraction: a new efficient method to derive respiratory signals from ecg, IEEE J. Biomed. Health Inform., 22, 1059, 10.1109/JBHI.2017.2734074
Daubechies, 2011, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmon. Anal., 30, 243, 10.1016/j.acha.2010.08.002
Lu, 2019, A novel underdetermined blind source separation method with noise and unknown source number, J. Sound Vib., 457, 67, 10.1016/j.jsv.2019.05.037
Zhen, 2017, Underdetermined blind source separation using sparse coding, IEEE Trans. Neural Netw. Learn. Syst., 28, 3102, 10.1109/TNNLS.2016.2610960
Bertsekas, 1982
Chen, 2020, Multivariate nonlinear chirp mode decomposition, Signal Process., 176, 107667, 10.1016/j.sigpro.2020.107667
Looney, 2009, Multiscale image fusion using complex extensions of EMD, IEEE Trans. Signal Process., 57, 1626, 10.1109/TSP.2008.2011836
Hao, 2017, A joint framework for multivariate signal denoising using multivariate empirical mode decomposition, Signal Process., 135, 263, 10.1016/j.sigpro.2017.01.022
Naveed, 2020, Wavelet based multivariate signal denoising using Mahalanobis distance and EDF statistics, IEEE Trans. Signal Process., 68, 5997, 10.1109/TSP.2020.3029659
Jing, 2009, A novel method for multi-fault diagnosis of rotor system, Mech. Mach. Theory, 44, 697, 10.1016/j.mechmachtheory.2008.05.002
Hu, 2016, Sparse component analysis-based under-determined blind source separation for bearing fault feature extraction in wind turbine gearbox, IET Renew. Power Gener., 11, 330, 10.1049/iet-rpg.2016.0240
Scharnhorst, 2001, Angles in complex vector spaces, Acta Appl. Math., 69, 95, 10.1023/A:1012692601098
Guo, 2018, A complex-valued mixing matrix estimation algorithm for underdetermined blind source separation, Circuits Syst. Signal Process., 37, 3206, 10.1007/s00034-018-0796-6
Bao, 2009, Time-varying system identification using a newly improved HHT algorithm, Comput. Struct., 87, 1611, 10.1016/j.compstruc.2009.08.016