Successive multivariate variational mode decomposition based on instantaneous linear mixing model

Signal Processing - Tập 190 - Trang 108311 - 2022
Shuaishuai Liu1, Kaiping Yu1
1Department of Astronautic Science and Mechanics, Harbin Institute of Technology, No. 92 West Dazhi Street, Harbin 150001, China

Tài liệu tham khảo

Chen, 2019, Adaptive chirp mode pursuit: algorithm and applications, Mech. Syst. Signal Process., 116, 566, 10.1016/j.ymssp.2018.06.052 Iatsenko, 2015, Nonlinear mode decomposition: a noise-robust, adaptive decomposition method, Phys. Rev. E, 92, 032916, 10.1103/PhysRevE.92.032916 Crochiere, 1980, A weighted overlap-add method of short-time Fourier analysis/synthesis, IEEE Trans. Acoust., 28, 99, 10.1109/TASSP.1980.1163353 Gilles, 2013, Empirical wavelet transform, IEEE Trans. Signal Process., 61, 3999, 10.1109/TSP.2013.2265222 Singh, 2018, An empirical wavelet transform based approach for multivariate data processing application to cardiovascular physiological signals, Bio-Algorithms Med-Syst., 14, 20180030, 10.1515/bams-2018-0030 Lahmiri, 2014, Comparative study of ECG signal denoising by wavelet thresholding in empirical and variational mode decomposition domains, Healthc. Technol. Lett., 1, 104, 10.1049/htl.2014.0073 Wang, 2018, Sparsity guided empirical wavelet transform for fault diagnosis of rolling element bearings, Mech. Syst. Signal Process., 101, 292, 10.1016/j.ymssp.2017.08.038 Huang, 1998, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, Proc. R. Soc. London Ser.A, 454, 903, 10.1098/rspa.1998.0193 Chen, 2017, Nonlinear chirp mode decomposition: a variational method, IEEE Trans. Signal Process., 65, 6024, 10.1109/TSP.2017.2731300 Dragomiretskiy, 2014, Variational mode decomposition, IEEE Trans. Signal Process., 62, 531, 10.1109/TSP.2013.2288675 Wu, 2009, Ensemble empirical mode decomposition: anoise-assisted data analysis method, Adv. Adapt. Data Anal., 01, 1, 10.1142/S1793536909000047 Yeh, 2010, Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method, Adv. Adapt. Data Anal., 2, 22, 10.1142/S1793536910000422 Frei, 2007, Intrinsic time-scale decomposition: time–frequency–energy analysis and real-time filtering of non-stationary signals, Proc. R. Soc. A, 463, 321, 10.1098/rspa.2006.1761 Wang, 2015, Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system, Mech. Syst. Signal Process., 60–61, 243, 10.1016/j.ymssp.2015.02.020 Li, 2018, Multi-dimensional variational mode decomposition for bearing-crack detection in wind turbines with large driving-speed variations, Renew. Energy, 116, 55, 10.1016/j.renene.2016.12.013 Li, 2019, Underdetermined blind separation of bearing faults in hyperplane space with variational mode decomposition, Mech. Syst. Signal Process., 120, 83, 10.1016/j.ymssp.2018.10.016 Ni, 2018, Time-varying system identification using variational mode decomposition, Struct. Control Health Monit., 25, e2175, 10.1002/stc.2175 Bagheri, 2018, Structural system identification based on variational mode decomposition, J. Sound Vib., 417, 182, 10.1016/j.jsv.2017.12.014 Nazari, 2020, Successive variational mode decomposition, Signal Process., 174, 107610, 10.1016/j.sigpro.2020.107610 Stanković, 2020, On the decomposition of multichannel nonstationary multicomponent signals, Signal Process., 167, 107261, 10.1016/j.sigpro.2019.107261 Kameoka, 2009, Complex NMF: a new sparse representation for acoustic signals, 3437 2007, Blind Speech Separation Chen, 2018, Nonstationary signal denoising using an envelope-tracking filter, IEEE/ASME Trans. Mechatron., 23, 2004, 10.1109/TMECH.2017.2786265 ur Rehman, 2019, Multivariate variational mode decomposition, IEEE Trans. Signal Process., 67, 6039, 10.1109/TSP.2019.2951223 Rehman, 2009, Bivariate EMD-based image fusion, 57 Rehman, 2010, Multivariate empirical mode decomposition, Proc. R. Soc. A, 466, 1291, 10.1098/rspa.2009.0502 Lang, 2018, Fast multivariate empirical mode decomposition, IEEE Access, 6, 65521, 10.1109/ACCESS.2018.2877150 Lang, 2018, Time-frequency analysis of plant-wide oscillations using multivariate intrinsic time-scale decomposition, Ind. Eng. Chem. Res., 57, 954, 10.1021/acs.iecr.7b03042 Lang, 2020, Direct multivariate intrinsic time-scale decomposition for oscillation monitoring, IEEE Trans. Control Syst. Technol., 28, 2608, 10.1109/TCST.2019.2940374 Chen, 2021, Multivariate intrinsic chirp mode decomposition, Signal Process., 183, 108009, 10.1016/j.sigpro.2021.108009 Stanković, 2018, Time-frequency decomposition of multivariate multicomponent signals, Signal Process., 142, 468, 10.1016/j.sigpro.2017.08.001 Brajović, 2020, Decomposition of multichannel multicomponent nonstationary signals by combining the eigenvectors of autocorrelation matrix using genetic algorithm, Digit Signal Process, 102, 102738, 10.1016/j.dsp.2020.102738 Zhang, 2008, A new mixing matrix identification algorithm for underdetermined blind source separation, 268 Belouchrani, 1997, A blind source separation technique using second-order statistics, IEEE Trans. Signal Process., 45, 434, 10.1109/78.554307 Antoni, 2013, A study and extension of second-order blind source separation to operational modal analysis, J. Sound Vib., 332, 1079, 10.1016/j.jsv.2012.09.016 Yu, 2014, Estimation of modal parameters using the sparse component analysis based underdetermined blind source separation, Mech. Syst. Signal Process., 45, 302, 10.1016/j.ymssp.2013.11.018 Zhou, 2018, Output-only modal estimation using sparse component analysis and density-based clustering algorithm, Measurement, 126, 120, 10.1016/j.measurement.2018.05.002 Nazari, 2018, Variational mode extraction: a new efficient method to derive respiratory signals from ecg, IEEE J. Biomed. Health Inform., 22, 1059, 10.1109/JBHI.2017.2734074 Daubechies, 2011, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool, Appl. Comput. Harmon. Anal., 30, 243, 10.1016/j.acha.2010.08.002 Lu, 2019, A novel underdetermined blind source separation method with noise and unknown source number, J. Sound Vib., 457, 67, 10.1016/j.jsv.2019.05.037 Zhen, 2017, Underdetermined blind source separation using sparse coding, IEEE Trans. Neural Netw. Learn. Syst., 28, 3102, 10.1109/TNNLS.2016.2610960 Bertsekas, 1982 Chen, 2020, Multivariate nonlinear chirp mode decomposition, Signal Process., 176, 107667, 10.1016/j.sigpro.2020.107667 Looney, 2009, Multiscale image fusion using complex extensions of EMD, IEEE Trans. Signal Process., 57, 1626, 10.1109/TSP.2008.2011836 Hao, 2017, A joint framework for multivariate signal denoising using multivariate empirical mode decomposition, Signal Process., 135, 263, 10.1016/j.sigpro.2017.01.022 Naveed, 2020, Wavelet based multivariate signal denoising using Mahalanobis distance and EDF statistics, IEEE Trans. Signal Process., 68, 5997, 10.1109/TSP.2020.3029659 Jing, 2009, A novel method for multi-fault diagnosis of rotor system, Mech. Mach. Theory, 44, 697, 10.1016/j.mechmachtheory.2008.05.002 Hu, 2016, Sparse component analysis-based under-determined blind source separation for bearing fault feature extraction in wind turbine gearbox, IET Renew. Power Gener., 11, 330, 10.1049/iet-rpg.2016.0240 Scharnhorst, 2001, Angles in complex vector spaces, Acta Appl. Math., 69, 95, 10.1023/A:1012692601098 Guo, 2018, A complex-valued mixing matrix estimation algorithm for underdetermined blind source separation, Circuits Syst. Signal Process., 37, 3206, 10.1007/s00034-018-0796-6 Bao, 2009, Time-varying system identification using a newly improved HHT algorithm, Comput. Struct., 87, 1611, 10.1016/j.compstruc.2009.08.016