Subtractive Proteomics and Reverse Vaccinology Strategies for Designing a Multiepitope Vaccine Targeting Membrane Proteins of Klebsiella pneumoniae
Tóm tắt
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen that causes bacteremia, meningitis, endocarditis, cellulitis, urinary tract infections. The emergence of antibiotic resistance in this pathogen makes the infection of K. pneumoniae more dangerous. Therefore, it is the need of hour to use the advanced technologies for developing vaccines, which can surpass the traditional methods used for treating the infections. In our study, we have considered designing multi-epitope based vaccines targeting the outer membrane proteins of K. pneumoniae. The proteome of K. pneumoniae was analysed using subtractive proteomics, and reverse vaccinology. In subtractive proteomics, the proteins were sorted on the basis of SignalP, TatP, LIPOP, Transmembrane helicity (TMHMM, HMMTOP), and cellular localization (CELLO and PSORTb). Fifteen outer membrane protein were selected that had the potential for the multi-epitope based vaccine designing. The MHC I, MHC II, B cell interacting epitopes of these proteins, which could generate a decent cellular and humoral immune responses in the host cell, were analysed. On this basis, four vaccine constructs (VK1 to VK4) were analyzed for their antigenicity, allergenicity, solubility, and physicochemical properties. Out of these constructs, VK2 was modeled using RapotorX server and docked (PatchDock) with different HLA alleles, and its molecular dynamics was also studied. These analysis showed that VK2 multi-epitope vaccine could be a suitable target to control the K. pneumoniae infections.
Tài liệu tham khảo
Ahmad TA, El-Sayed LH, Haroun M, Hussein AA, Sayed El (2012) Development of immunization trials against Klebsiella pneumoniae. Vaccine 30(14):2411–2420. https://doi.org/10.1016/j.vaccine.2011.11.027
Babu L, Uppalapati SR, Sripathy MH, Reddy PN (2017) Evaluation of recombinant multi-epitope outer membrane protein-based Klebsiella pneumoniae subunit vaccine in mouse model. Front Microbiol 8:1805–1805. https://doi.org/10.3389/fmicb.2017.01805
Bagos PG, Tsirigos KD, Liakopoulos TD, Hamodrakas SJ (2008) Prediction of lipoprotein signal peptides in Gram-positive bacteria with a Hidden Markov Model. J Proteome Res 7(12):5082–5093. https://doi.org/10.1021/pr800162c
Bendtsen JD, Nielsen H, Widdick D, Palmer T, Brunak S (2005) Prediction of twin-arginine signal peptides. BMC Bioinform 6:167. https://doi.org/10.1186/1471-2105-6-167
Brady M, Cunney R, Murchan S, Oza A, Burns K (2016) Klebsiella pneumoniae bloodstream infection, antimicrobial resistance and consumption trends in Ireland: 2008 to 2013. Eur J Clin Microbiol Infect Dis 35(11):1777–1785
Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33:D325-328. https://doi.org/10.1093/nar/gki008
Cheng J, Randall AZ, Sweredoski MJ, Baldi P (2005) SCRATCH: a protein structure and structural feature prediction server. Nucleic Acids Res 33:W72-76. https://doi.org/10.1093/nar/gki396
Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform 8:4. https://doi.org/10.1186/1471-2105-8-4
El-Manzalawy Y, Dobbs D, Honavar V (2008a) Predicting linear B-cell epitopes using string kernels. J Mol Recognit 21(4):243–255. https://doi.org/10.1002/jmr.893
El-Manzalawy Y, Dobbs D, Honavar V (2008b) Predicting flexible length linear B-cell epitopes. Comput Syst Bioinform Conf 7:121–132
Follador R, Heinz E, Wyres KL, Ellington MJ, Kowarik M, Holt KE, Thomson NR (2016) The diversity of Klebsiella pneumoniae surface polysaccharides. Microbial Genomics 2(8):e000073. https://doi.org/10.1099/mgen.0.000073
Frirdich E, Whitfield C (2005) Lipopolysaccharide inner core oligosaccharide structure and outer membrane stability in human pathogens belonging to the Enterobacteriaceae. J Endotoxin Res 11(3):133–144. https://doi.org/10.1179/096805105x46592
Gasteiger E, Hoogland C, Gattiker A, Wilkins MR, Appel RD, Bairoch A (2005) protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press, Totowa, pp 571–607. https://doi.org/10.1385/1-59259-890-0:571
Geourjon C, Deleage G (1995) SOPMA: significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Comput Appl Biosci 11(6):681–684
Giguere S, Drouin A, Lacoste A, Marchand M, Corbeil J, Laviolette F (2013) MHC-NP: predicting peptides naturally processed by the MHC. J Immunol Methods 400–401:30–36. https://doi.org/10.1016/j.jim.2013.10.003
Gupta S, Kapoor P, Chaudhary K, Gautam A, Kumar R, Raghava GP (2013) In silico approach for predicting toxicity of peptides and proteins. PLoS ONE 8(9):e73957. https://doi.org/10.1371/journal.pone.0073957
Huang Y, Li J, Gu D, Fang Y, Chan EW, Chen S, Zhang R (2015) Rapid detection of K1 Hypervirulent Klebsiella pneumoniae by MALDI-TOF MS. Front Microbiol 6:1435. https://doi.org/10.3389/fmicb.2015.01435
Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M (2016) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res 44(D1):D457–D462. https://doi.org/10.1093/nar/gkv1070
Kim Y, Ponomarenko J, Zhu Z, Tamang D, Wang P, Greenbaum J, Lundegaard C, Sette A, Lund O, Bourne PE, Nielsen M, Peters B (2012) Immune epitope database analysis resource. Nucleic Acids Res 40:W525-530. https://doi.org/10.1093/nar/gks438
Krogh A, Larsson B, von Heijne G, Sonnhammer EL (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305(3):567–580. https://doi.org/10.1006/jmbi.2000.4315
Lee W-H, Choi H-I, Hong S-W, Kim K-S, Gho YS, Jeon SG (2015) Vaccination with Klebsiella pneumoniae-derived extracellular vesicles protects against bacteria-induced lethality via both humoral and cellular immunity. Exp Mol Med 47:e183. https://doi.org/10.1038/emm.2015.59
Liu B, Zheng D, Jin Q, Chen L, Yang J (2019) VFDB 2019: a comparative pathogenomic platform with an interactive web interface. Nucleic Acids Res 47(D1):D687-d692. https://doi.org/10.1093/nar/gky1080
Llobet E, Martínez-Moliner V, Moranta D, Dahlström KM, Regueiro V, Tomás A, Cano V, Pérez-Gutiérrez C, Frank CG, Fernández-Carrasco H, Insua JL, Salminen TA, Garmendia J, Bengoechea JA (2015) Deciphering tissue-induced Klebsiella pneumoniae lipid A structure. Proc Natl Acad Sci USA 112(46):E6369–E6378. https://doi.org/10.1073/pnas.1508820112
Lundberg U, Senn BM, Schüler W, Meinke A, Hanner M (2013) Identification and characterization of antigens as vaccine candidates against Klebsiella pneumoniae. Hum Vac Immunother 9(3):497–505. https://doi.org/10.4161/hv.23225
Micoli F, Costantino P, Adamo R (2018) Potential targets for next generation antimicrobial glycoconjugate vaccines. FEMS Microbiol Rev 42(3):388–423. https://doi.org/10.1093/femsre/fuy011
Nielsen M, Andreatta M (2016) NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets. Genome Med 8(1):33. https://doi.org/10.1186/s13073-016-0288-x
Opoku-Temeng C, Kobayashi SD, DeLeo FR (2019) Klebsiella pneumoniae capsule polysaccharide as a target for therapeutics and vaccines. Comput Struct Biotechnol J 17:1360–1366. https://doi.org/10.1016/j.csbj.2019.09.011
Petersen TN, Brunak S, von Heijne G, Nielsen H (2011) SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8(10):785–786. https://doi.org/10.1038/nmeth.1701
Stranzl T, Larsen MV, Lundegaard C, Nielsen M (2010) NetCTLpan: pan-specific MHC class I pathway epitope predictions. Immunogenetics 62(6):357–368. https://doi.org/10.1007/s00251-010-0441-4
Struve C, Roe CC, Stegger M, Stahlhut SG, Hansen DS, Engelthaler DM, Andersen PS, Driebe EM, Keim P, Krogfelt KA (2015) Mapping the evolution of hypervirulent Klebsiella pneumoniae. mBio 6(4):e00630. https://doi.org/10.1128/mBio.00630-15
Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M, Bork P, Jensen LJ, von Mering C (2015) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic acids Res 43:D447–D452. https://doi.org/10.1093/nar/gku1003
Thomsen M, Lundegaard C, Buus S, Lund O, Nielsen M (2013) MHCcluster, a method for functional clustering of MHC molecules. Immunogenetics 65(9):655–665. https://doi.org/10.1007/s00251-013-0714-9
Wang P, Sidney J, Kim Y, Sette A, Lund O, Nielsen M, Peters B (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform 11:568. https://doi.org/10.1186/1471-2105-11-568
Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64(3):643–651. https://doi.org/10.1002/prot.21018
Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FS (2010) PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26(13):1608–1615. https://doi.org/10.1093/bioinformatics/btq249
Zhang Y, Zhou C-M, Pu Q, Wu Q, Tan S, Shao X, Zhang W, Xie Y, Li R, Yu X-j, Wang R, Zhang L, Wu M, Deng X (2019) Pseudomonas aeruginosa regulatory protein AnvM controls pathogenicity in anaerobic environments and impacts host defense. mBio 10(4):e01362. https://doi.org/10.1128/mBio.01362-19