Subtotal cholecystectomy for difficult acute cholecystitis: how to finalize safely by laparoscopy—a systematic review

Adriana Toro1, Michele Teodoro2, Mansoor A. Khan3, Elena Schembari4, Salomone Di Saverio5, Fausto Catena6, Isidoro Di Carlo7
1General Surgery, Augusta Hospital, Siracusa, Italy
2Department of Emergency, S. Marco Hospital, Catania, Italy
3Brighton and Sussex University Hospitals NHS Trust, Brighton, UK
4Department of General Surgery, Whipps Cross University Hospital-Barts Health NHS Trust, , London, UK
5General Surgery, University of Insubria, Varese, Italy
6Emergency and Trauma Surgery, Parma Maggiore Hospital, Parma, Italy
7Department of Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Cannizzaro Hospital, University of Catania, Via Messina 829, 95126, Catania, Italy

Tóm tắt

Abstract Background Aim of this study was to clarify the best laparoscopic subtotal cholecystectomy (LSTC) technique for finalizing a difficult cholecystectomy. Patients and methods A review was performed (1987–2021) searching "difficulty cholecystectomy" AND/OR "subtotal cholecystectomy". The LSTC techniques considered were as follows: type A, leaving posterior wall attached to the liver and the remainder of the gallbladder stump open; type B, like type A but with the stump closed; type C, resection of both the anterior and posterior gallbladder walls and the stump closed; type D, like type C but with the stump open. Morbidity (including mortality) was analysed with Dindo–Clavien classification. Results Nineteen articles were included. Of the 13,340 patients screened, 678 (8.2%) had cholecystectomy finalized by LSTC: 346 patients (51.0%) had type A LSTC, 134 patients (19.8%) had type B LSTC, 198 patients (29.2%) had type C LSTC, and 198 patients (0%) had type D LSTC. Bile leakage was found in 83 patients (12.2%), and recorded in 58 patients (69.9%) treated by type A. Twenty-three patients (3.4%) developed a subhepatic collection, 19 of whom (82.6%) were treated by type A. Other complications were reported in 72 patients (10.6%). The Dindo–Clavien classification was four for grade I, 27 for grade II, 126 for grade IIIa, 18 for grade IIIb, zero for grade IV and three for grade V. Conclusion In the case of LSTC, closure of the gallbladder stump represents the best method to avoid complications. Careful exploration of the gallbladder stump is mandatory, washing the abdominal cavity and leaving drainage.

Từ khóa


Tài liệu tham khảo

Purzner RH, Ho KB, Al-Sukhni E, Jayaraman S. Safe laparoscopic subtotal cholecystectomy in the face of severe inflammation in the cystohepatic triangle: a retrospective review and proposed management strategy for the difficult gallbladder. Can J Surg. 2019;62:402–11.

Taki-Eldin A, Badawy AE. Outcome of laparoscopic cholecystectomy in patients with gallstone disease at a secondary level care hospital. Arq Bras Cir Dig. 2018;31:e1347.

Maehira H, Kawasaki M, Itoh A, Ogawa M, Mizumura N, Toyoda S, et al. Prediction of difficult laparoscopic cholecystectomy for acute cholecystitis. J Surg Res. 2017;216:143–8.

Katsohis C, Prousalidis J, Tzardinoglou E, Michalopoulos A, Fahandidis E, Apostolidis S, et al. Subtotal cholecystectomy. HPB Surg. 1996;9:133–6.

Wolf AS, Nijsse BA, Sokal SM, Chang Y, Berger DL. Surgical outcomes of open cholecystectomy in the laparoscopic era. Am J Surg. 2009;197:781–4.

Di Carlo I, Pulvirenti E, Toro A, Corsale G. Modified subtotal cholecystectomy: results of a laparotomy procedure during the laparoscopic era. World J Surg. 2009;33:520–5.

Jeong IO, Kim JY, Choe YM, Choi SK, Heo YS, Lee KY, et al. Efficacy and feasibility of laparoscopic subtotal cholecystectomy for acute cholecystitis. Korean J Hepatobiliary Pancreat Surg. 2011;15:225–30.

Kulen F, Tihan D, Duman U, Bayam E, Zaim G. Laparoscopic partial cholecystectomy: a safe and effective alternative surgical technique in “Difficult Cholecystectomies.” Ulus Cerrahi Derg. 2016;32:185–90.

Beldi G. Glättli A Laparoscopic subtotal cholecystectomy for severe cholecystitis. Surg Endosc. 2003;17:1437–79.

Özçınar B, Memişoğlu E, Gök AFK, Ağcaoğlu O, Yanar F, İlhan M, et al. Damage-control laparoscopic partial cholecystectomy with an endoscopic linear stapler. Turk J Surg. 2017;33:37–9.

Visser BC, Parks RW, Garden OJ. Open cholecystectomy in the laparoendoscopic era. Am J Surg. 2008;195:108–14.

Flum DR, Dellinger EP, Cheadle A, Chan L, Koepsell T. Intraoperative cholangiography and risk of common bile duct injury during cholecystectomy. JAMA. 2003;289:1639–44.

Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration. BMJ. 2009;339:b2700.

Abdelrahim WE, Elsiddig KE, Wahab AA, Saad M, Saeed H, Khalil EAG. Subtotal Laparoscopic cholecystectomy influences the rate of conversion in patients with difficult laparoscopic cholecystectomy: case series. Ann Med Surg (Lond). 2017;19:19–22.

Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–13.

Michalowski K, Bornman PC, Krige JE, Gallagher PJ, Terblanche J. Laparoscopic subtotal cholecystectomy in patients with complicated acute cholecystitis or fibrosis. Br J Surg. 1998;85:904–6.

Ransom KJ. Laparoscopic management of acute cholecystitis with subtotal cholecystectomy. Am Surg. 1998;64:955–7.

Chowbey PK, Sharma A, Khullar R, Mann V, Baijal M, Vashistha A. Laparoscopic subtotal cholecystectomy: a review of 56 procedures. J Laparoendosc Adv Surg Tech A. 2000;10:31–4.

Sinha I, Smith ML, Safranek P, Dehn T, Booth M. Laparoscopic subtotal cholecystectomy without cystic duct ligation. Br J Surg. 2007;94:1527–9.

Horiuchi A, Watanabe Y, Doi T, Sato K, Yukumi S, Yoshida M, et al. Delayed laparoscopic subtotal cholecystectomy in acute cholecystitis with severe fibrotic adhesions. Surg Endosc. 2008;22:2720–3.

Philips JA, Lawes DA, Cook AJ, Arulampalam TH, Zaborsky A, Menzies D, et al. The use of laparoscopic subtotal cholecystectomy for complicated cholelithiasis. Surg Endosc. 2008;22:1697–700.

Hubert C, Annet L, van Beers BE, Gigot JF. The “inside approach of the gallbladder” is an alternative to the classic Calot’s triangle dissection for a safe operation in severe cholecystitis. Surg Endosc. 2010;24:2626–32.

Kuwabara J, Watanabe Y, Kameoka K, Horiuchi A, Sato K, Yukumi S, et al. Usefulness of laparoscopic subtotal cholecystectomy with operative cholangiography for severe cholecystitis. Surg Today. 2014;44:462–5.

Harilingam MR, Shrestha AK, Basu S. Laparoscopic modified subtotal cholecystectomy for difficult gall bladders: A single-centre experience. J Minim Access Surg. 2016;12:325–9.

Shin M, Choi N, Yoo Y, Kim Y, Kim S, Mun S. Clinical outcomes of subtotal cholecystectomy performed for difficult cholecystectomy. Ann Surg Treat Res. 2016;91:226–32.

Abdallah HS. Laparoscopic subtotal cholecystectomy for difficult acute calculous Cholecystitis. J Surg. 2017;5:111–7.

Matsumura T, Komatsu S, Komaya K, Ando K, Arikawa T, Ishiguro S, et al. Closure of the cystic duct orifice in laparoscopic subtotal cholecystectomy for severe cholecystitis. Asian J Endosc Surg. 2018;11:206–11.

Kohga A, Suzuki K, Okumura T, Yamashita K, Isogaki J, Kawabe A, et al. Does preoperative MRCP imaging predict risk for conversion to subtotal cholecystectomy in patients with acute cholecystitis? Surg Endosc. 2020. https://doi.org/10.1007/s00464-020-08175-2.

Slater M, Midya S, Booth M. Re-interventions and re-admissions in a 13-year series following use of laparoscopic subtotal cholecystectomy. J Minim Access Surg. 2021;17:28–31.

Sabour AF, Matsushima K, Love BE, Alicuben ET, Schellenberg MA, Inaba K, et al. Nationwide trends in the use of subtotal cholecystectomy for acute cholecystitis. Surgery. 2020;167:569–74.

Shimoda M, Udo R, Imasato R, Oshiro Y, Suzuki S. What are the risk factors of conversion from total chlecystectomy to bailout surgery? Surg Endosc. 2021;35:2206–10.

Nassar AHM, Zanati HE, Ng HJ, Khan KS, Wood C. Open conversion in laparoscopic cholecystectomy and bile duct exploration: subspecialisation safely reduces the conversion rates. Surg Endosc. 2021.

Kimura Y, Takada T, Strasberg SM, Pitt HA, Gouma DJ, Garden OJ, et al. TG13 current terminology, etiology, and epidemiology of acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci. 2013;20:8–23.

Sugrue M, Sahebally SM, Ansaloni L, Zielinski MD. Grading operative findings at laparoscopic cholecystectomy-a new scoring system. World J Emerg Surg. 2015;10:14.

Mayumi T, Okamoto K, Takada T, Strasberg SM, Solomkin JS, Schlossberg D, et al. Tokyo Guidelines 2018: management bundles for acute cholangitis and cholecystitis. J Hepatobiliary Pancreat Sci. 2018;25:96–100.

Strasberg SM. Biliary injury in laparoscopic surgery: part 2. Changing the culture of cholecystectomy. J Am Coll Surg. 2005;201:604–11.

van Dijk AH, Donkervoort SC, Lameris W, de Vries E, Eijsbouts QAJ, Vrouenraets BC, et al. Short and long-term outcomes after a reconstituting and fenestrating subtotal cholecystectomy. J Am Coll Surg. 2017;225:371–9.

Strasberg SM, Brunt LM. Rationale and use of the critical view of safety in laparoscopic cholecystectomy. J Am Coll Surg. 2010;211:132–8.

Hugh TB, Kelly MD, Mekisic A. Rouvière’s sulcus: a useful landmark in laparoscopic cholecystectomy. Br J Surg. 1997;84:1253–4.

Phillips EH, Berci G, Carroll B, Daykhovsky L, Sackier J, Paz-Partlow M. The importance of intraoperative cholangiography during laparoscopic cholecystectomy. Am Surg. 1990;56:792–5.

Ishizawa T, Tamura S, Masuda K, Aoki T, Hasegawa K, Imamura H, et al. Intraoperative fluorescent cholangiography using indocyanine green: a biliary road map for safe surgery. J Am Coll Surg. 2009;208:e1-4.

Strasberg SM, Hertl M, Soper NJ. An analysis of the problem of biliary injury during laparoscopic cholecystectomy. J Am Coll Surg. 1995;180:101–25.

Dahmane R, Morjane A, Starc A. Anatomy and surgical relevance of Rouviere’s sulcus. Sci World J. 2013;2013:254287.

Ladocsi LT, Benitez LD, Filippone DR, Nance FC. Intraoperative cholangiography in laparoscopic cholecystectomy: a review of 734 consecutive cases. Am Surg. 1997;63:150–6.

Aoki T, Murakami M, Yasuda D, Shimizu Y, Kusano T, Matsuda K, et al. Intraoperative fluorescent imaging using indocyanine green for liver mapping and cholangiography. J Hepatobiliary Pancreat Sci. 2010;17:590–4.

Dip F, Lo Menzo E, White KP, Rosenthal RJ. Does near-infrared fluorescent cholangiography with indocyanine green reduce bile duct injuries and conversions to open surgery during laparoscopic or robotic cholecystectomy? A meta-analysis. Surgery. 2021;169:859–67.

Dip FD, Asbun D, Rosales-Velderrain A, Lo Menzo E, Simpfendorfer CH, Szomstein S, Rosenthal RJ. Cost analysis and effectiveness comparing the routine use of intraoperative fluorescent cholangiography with fluoroscopic cholangiogram in patients undergoing laparoscopic cholecystectomy. Surg Endosc. 2014;28:1838–43.

Lelner AI. Partial cholecystectomy. Can Med Assoc J. 1950;63:54–6.

Bornman PC, Terblanche J. Subtotal cholecystectomy: for the difficult gallbladder in portal hypertension and cholecystitis. Surgery. 1985;98:1–6.

Strasberg SM, Pucci MJ, Brunt LM, Deziel DJ. Subtotal cholecystectomy-"Fenestrating" vs “Reconstituting” subtypes and the prevention of bile duct injury: definition of the optimal procedure in difficult operative conditions. J Am Coll Surg. 2016;222:89–96.

Subramaniasivam N, Ananthakrishnan N, Kate V, Smile R, Jagdish S, Srinivasan K. Partial cholecystectomy in elective and emergency gall bladder surgery in the high risk patients a viable and safe option in the era of laparoscopic surgery. Trop Gastroenterol. 1996;17:49–52.

Henneman D, da Costa DW, Vrouenraets BC, van Wagensveld BA, Lagarde SM. Laparoscopic partial cholecystectomy for the difficult gallbladder: a systematic review. Surg Endosc. 2013;27:351–8.

Yang J, He Z, Zhang S, Zhao X, Sun J, Mao Z. Implementation of a simplified self-releasing biliary stent in choledocholithiasis: experience in 150 cases. Asian J Endosc Surg. 2020;13:195–9.

Yachimski P, Orr JK, Gamboa A. Endoscopic plastic stent therapy for bile leaks following total vs subtotal cholecystectomy. Endosc Int Open. 2020;8:E1895–9.

Baron TH, Poterucha JJ. Insertion and removal of covered expandable metal stents for closure of complex biliary leaks. Clin Gastroenterol Hepatol. 2006;4:381–6.

Matsui Y, Hirooka S, Kotsuka M, Yamaki S, Yamamoto T, Kosaka H, et al. Use of a piece of free omentum to prevent bile leakage after subtotal cholecystectomy. Surgery. 2018;164:419–23.

Khadra H, Johnson H, Crowther J, McClaren P, Darden M, Parker G, Buell JF. Bile duct injury repairs: progressive outcomes in a tertiary referral center. Surgery. 2019;166:698–702.