Substitution effects on the hydrogen storage behavior of AB2 alloys by first principles

Frontiers of Physics - Tập 6 - Trang 214-219 - 2011
Fen Li1,2,3, Ji-jun Zhao1,2, Li-xian Sun3
1Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Ministry of Education, Dalian, China
2College of Advanced Science and Technology, Dalian University of Technology, Dalian, China
3Materials and Thermochemistry Laboratory, Dalian Institute of Chemical Physics, Dalian, China

Tóm tắt

The hydrogen storage behavior of the TiCr2 and ZrCr2 alloys substituted with the third components (Zr, V, Fe, Ni) have been studied using first-principles calculations. The change of the hydrogen absorption energies caused by metal doping is arising from the charge transfer among the doped alloys interior. Zr and V atoms devoted abundant electrons, leading to a great enhancement of the H absorption energy, while Fe and Ni atoms always accepted electrons, yielding a remarkable decrease of the H absorption energy. The hydrogen diffusion energy barrier is closely correlated with the geometry effect rather than the electronic structure.

Tài liệu tham khảo

Y. F. Zhao, Y. H. Kim, A. C. Dillon, M. J. Heben, and S. B. Zhang, Phys. Rev. Lett., 2005, 94(15): 155504 M. Li, Y. F. Li, Z. Zhou, P. W. Shen, and Z. F. Chen, Nano Lett., 2009, 9(5): 1944 J. L. C. Rowsell and O. M. Yaghi, Angew. Chem. Int. Ed., 2005, 44(30): 4670 D. J. Collins and H. C. Zhou, J. Mater. Chem., 2007, 17(30): 3154 L. J. Murray, M. Dincǎ, and J. R. Long, Chem. Soc. Rev., 2009, 38(5): 1294 S. S. Han, H. Furukawa, O. M. Yaghi, and Goddard, J. Am. Chem. Soc., 2008, 130(35): 11580 H. Furukawa and O. M. Yaghi, J. Am. Chem. Soc., 2009, 131(25): 8875 L. Zaluski and A. Zaluska, J. Alloys Comp., 1997, 253(1—2): 70 L. Schlapbach and A. Züttel, Nature, 2001, 414(6861): 353 D. Ohlendorf and H. E. Flotow, J. Chem. Phys., 1980, 73(6): 2937 S. Srivastava and O. N. Srivastava, J. Alloys Comp., 1999, 290: 250 K. Tatsumi, I. Tanaka, H. Inui, K. Tanaka, M. Yamaguchi, and H. Adachi, Phys. Rew. B, 2001, 64(18): 184105 J. H. Sanders and B. J. Tatarchuk, J. Less Common Met., 1989, 147(2): 277 J. H. Woo and K. S. Lee, J. Electrochem. Soc., 1999, 146(3): 819 Y. H. Zhang, X. P. Dong, D. L. Zhao, S. H. Guo, Y. Qi, and X. L. Wang, Trans. Nonferrous Met. Soc., 2008, 18(4): 857 Y. H. Xu, C. P. Chen, X. L. Wang, Y. Q. Lei, and Q. D. Wang, J. Alloys Comp., 2002, 337: 214 N. Mani and S. Ramaprabhu, Int. J. Hydrogen Energy, 2005, 30(1): 53 C. Iwakura, H. Kasuga, I. Kim, H. Inoue, and M. Matsuoka, Electrochim. Acta, 1996, 41: 2694 Y. F. Liu, H. G. Pan, M. X. Gao, Y. F. Zhu, and Y. Q. Lei, J. Alloys Comp., 2004, 365: 246 S. Vivet, J. M. Joubert, B. Knosp, P. Ochin, and A. P. Guégan, J. Alloys Comp., 2008, 465: 517 Y. H. Zhanga, D. L. Zhao, B.W. Li, X. L. Zhao, Z.W. Wu, and X. L. Wang, Int. J. Hydrogen Energy, 2008, 33: 1868 S. L. Li, P. Wang, W. Chena, G. Luo, D. M. Chen, and K. Yang, J. Alloys Comp., 2009, 485: 867 Y. Li, D. Han, S. M. Han, X. L. Zhu, L. Hu, Z. Zhang, and Y. W. Liu, Int. J. Hydrogen Energy, 2009, 34(3): 1399 L. Zaluski, A. Zaluska, P. Tessier, J. O. Ström-Olsen, and R. J. Schulz, Mater. Sci., 1996, 31: 695 H. Miyamura, M. Takada, K. Hirose, and S. Kikuchi, J. Alloys Comp., 2003, 356–357: 755 T. Kondo, K. Shindo, and Y. Sakurai, J. Alloys Comp., 2005, 404–406: 511 L. Smardz, M. Jurczyk, K. Smardz, M. Nowak, M. Makowiecka, and I. Okonsk, Renew. Energy, 2008, 33(2): 201 D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu, J. Alloys Comp., 2009, 478: 96 Y. H. Zhang, H. P. Ren, S. H. Guo, Z. G. Pang, Y. Qi, and X. L. Wang, J. Alloys Comp., 2009, 480: 750 Z. M. Wang, H. Y. Zhou, Z. F. Gu, G. Cheng, and A. B. Yu, J. Alloys Comp., 2004, 381(1–2): 234 X. Y. Song, Y. Chen, Z. Zhang, Y. Q. Lei, X. B. Zhang, and Q. D. Wang, Int. J. Hydrogen Energy, 2000, 25(7): 649 J. L. Bobet and B. Darriet, Int. J. Hydrogen Energy, 2000, 25(8): 767 W. E. Triaca, H. A. Peretti, H. L. Corso, A. Bonesi, and A. Visintin, J. Power Energy, 2003, 113: 151 T. Z. Huang, Z. Wu, B. J. Xia, and T. S. Huang, Mater. Chem. Phys., 2005, 93: 544 M. Kandavel, V. V. Bhat, A. Rougier, L. Aymarda, G. A. Nazri, and J. M. Tarascon, Int. J. Hydrogen Energy, 2008, 33(14): 3754 K. Young, T. Ouchi, J. Koch, and M. A. Fetcenko, J. Alloys Comp., 2009, 477: 749 R. J. Zhang, Y. M. Wang, D. M. Chen, R. Yang, and K. Yang, Acta Mater., 2006, 54(2): 465 Q. Li, Q. Lin, K. C. Chou, L. J. Jiang, and K. D. Xu, J. Alloys Comp., 2005, 397: 68 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, D. O. Northwood, J. Alloys Comp., 1990, 293: 10 D. J. Davidson, S. S. Sai Raman, M. V. Lototskyc, and O. N. Srivastava, Int. J. Hydrogen Energy, 2003, 28(12): 1425 S. S. Fang, Z. Q. Zhou, J. L. Zhang, M. Y. Yao, F. Feng, and D. O. Northwood, Int. J. Hydrogen Energy, 2000, 25(2): 143 F. Li, J. J. Zhao, D. X. Tian, H. L. Zhang, X. Z. Ke, and B. Johansson, J. Appl. Phys., 2009, 105(4): 043707 M. C. Payne, M. P. Teter, D. C. Alan, T. A. Arias, and J. D. Joannopoulos, Rev. Mod. Phys., 1992, 64(4): 1045 S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. I. J. Probert, K. Refson, and M. C. Payne, Z. Kristallogr., 2005, 220(5–6): 567 J. P. Perdew and Y. Wang, Phys. Rev. B, 1992, 45(23): 13244 M. R. Johnson, K. Parlinski, I. Natkaniec, and B. S. Hudson, Chem. Phys., 2003, 291(1): 53 D. Vanderbilt, Phys. Rev. B, 1990, 41(11): 7892 T. Z. Huang, Z. Wu, B. J. Xia, and N. X. Xu, Mater. Sci. Eng. A, 2005, 397: 284 J. L. Soubeyroux, M. Bououdina, D. Fruchart, and P. D. Range, J. Alloys Comp., 1995, 231(1–2): 760 L. Pauling, General Chemistry, 3rd Ed., San Francisco: W. H. Freeman Press, 1970