Substituent Influences on the NMR Signal Amplification of Ir Complexes with Heterocyclic Carbene Ligands

Applied Magnetic Resonance - Tập 50 - Trang 895-902 - 2019
Sara Hadjiali1, Roman Savka2, Markus Plaumann3, Ute Bommerich3, Sarah Bothe1, Torsten Gutmann1, Tomasz Ratajczyk4, Johannes Bernarding3, Hans-Heinrich Limbach5, Herbert Plenio2, Gerd Buntkowsky1
1Institute of Physical Chemistry, Technical University Darmstadt, Darmstadt, Germany
2Institute of Inorganic Chemistry, Technical University Darmstadt, Darmstadt, Germany
3Medical Faculty, Institute for Biometrics and Medical Informatics, Otto-Von-Guericke University Magdeburg, Magdeburg, Germany
4Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
5Institute of Chemistry, Freie Universität Berlin, Berlin, Germany

Tóm tắt

A number of Ir–N-heterocyclic carbene (Ir–NHC) complexes with asymmetric N-heterocyclic carbene (NHC) ligands have been prepared and examined for signal amplification by reversible exchange (SABRE). Pyridine was chosen as model compound for hyperpolarization experiments. This substrate was examined in a solvent mixture using several Ir–NHC complexes, which differ in their NHC ligands. The SABRE polarization was created at 6 mT and the 1H nuclear magnetic resonance signals were detected at 7 T. We show that asymmetric NHC ligands, because of their favorable chemistry, can adapt the SABRE active complexes to different chemical scenarios.

Tài liệu tham khảo

A.J. Arduengo, R.L. Harlow, M. Kline, J. Am. Chem. Soc. 113, 361–363 (1991) W.A. Herrmann, M. Elison, J. Fischer, C. Kocher, G.R.J. Artus, Angew. Chem. 34, 2371–2374 (1995) W.A. Herrmann, Angew. Chem. 41, 1290–1309 (2002) F. Godoy, C. Segarra, M. Poyatos, E. Peris, Organometallics 30, 684–688 (2011) A. Furstner, A. Leitner, Synlett 2001, 290–292 (2001) S.R. Chemler, D. Trauner, S.J. Danishefsky, Angew. Chem. 40, 4544–4568 (2001) H.M. Lee, D.C. Smith, Z.J. He, E.D. Stevens, C.S. Yi, S.P. Nolan, Organometallics 20, 794–797 (2001) L.D. Vazquez-Serrano, B.T. Owens, J.M. Buriak, Inorg. Chim. Acta 359, 2786–2797 (2006) R.H. Grubbs, Angew. Chem. 45, 3760–3765 (2006) L.H. Peeck, R.D. Savka, H. Plenio, Chem-Eur J 18, 12845–12853 (2012) V. Thiel, M. Hendann, K.J. Wannowius, H. Plenio, J. Am. Chem. Soc. 134, 1104–1114 (2012) S.L. Balof, S.J. P'Pool, N.J. Berger, E.J. Valente, A.M. Shiller, H.J. Schanz, Dalton T 42, 5791–5799 (2008) A. Monge-Marcet, R. Pleixats, X. Cattoen, M.W.C. Man, J. Mol. Catal. A 357, 59–66 (2012) R.W. Adams, J.A. Aguilar, K.D. Atkinson, M.J. Cowley, P.I.P. Elliott, S.B. Duckett, G.G.R. Green, I.G. Khazal, J. Lopez-Serrano, D.C. Williamson, Science 323, 1708–1711 (2009) M.J. Cowley, R.W. Adams, K.D. Atkinson, M.C.R. Cockett, S.B. Duckett, G.G.R. Green, J.A.B. Lohman, R. Kerssebaum, D. Kilgour, R.E. Mewis, J. Am. Chem. Soc. 133, 6134–6137 (2011) A.N. Pravdivtsev, K.L. Ivanov, A.V. Yurkovskaya, P.A. Petrov, H.H. Limbach, R. Kaptein, H.M. Vieth, J. Magn. Reson. 261, 73–82 (2015) P.J. Rayner, S.B. Duckett, Angew. Chem. 57, 6742–6753 (2018) T. Ratajczyk, T. Gutmann, P. Bernatowicz, G. Buntkowsky, J. Frydel, B. Fedorczyk, Chem-Eur J 21, 12616–12619 (2015) S. Gloggler, R. Muller, J. Colell, M. Emondts, M. Dabrowski, B. Blumich, S. Appelt, Phys. Chem. Chem. Phys. 13, 13759–13764 (2011) A.M. Olaru, M.J. Burns, G.G.R. Green, S.B. Duckett, Chem. Sci. 8, 2257–2266 (2017) L.R. Becerra, G.J. Gerfen, R.J. Temkin, D.J. Singel, R.G. Griffin, Phys. Rev. Lett. 71, 3561–3564 (1993) S. Bothe et al. J. Phys. Chem. C 122, 11422–11432 (2018) Y. Matsuki et al. Angew. Chem. 48, 4996–5000 (2009) M. Brodrecht, B. Kumari, H. Breitzke, T. Gutmann, G. Buntkowsky, Z. Phys. Chem. 232, 1127–1146 (2018) Q.Z. Ni, E. Daviso, T.V. Can, E. Markhasin, S.K. Jawla, T.M. Swager, R.J. Temkin, J. Herzfeld, R.G. Griffin, Acc. Chem. Res. 46, 1933–1941 (2013) M. Werner, A. Heil, N. Rothermel, H. Breitzke, P.B. Groszewicz, A.S. Thankamony, T. Gutmann, G. Buntkowsky, Solid State Nucl. Magn. Reson. 72, 73–78 (2015) B. Corzilius, Phys. Chem. Chem. Phys. 18, 29643–29643 (2016) T.C. Eisenschmid, R.U. Kirss, P.P. Deutsch, S.I. Hommeltoft, R. Eisenberg, J. Bargon, R.G. Lawler, A.L. Balch, J. Am. Chem. Soc. 109, 8089–8091 (1987) J. Barkemeyer, M. Haake, J. Bargon, J. Am. Chem. Soc. 117, 2927–2928 (1995) M. Plaumann, U. Bommerich, T. Trantzschel, D. Lego, S. Dillenberger, G. Sauer, J. Bargon, G. Buntkowsky, J. Bernarding, Chem-Eur J 19, 6334–6339 (2013) P. Nikolaou, B.M. Goodson, E.Y. Chekmenev, Chem-Eur J 21, 3156–3166 (2015) K.V. Kovtunov, I.E. Beck, V.I. Bukhtiyarov, I.V. Koptyug, Angew. Chem. 47, 1492–1495 (2008) A.A. Lysova, I.V. Koptyug, Chem. Soc. Rev. 39, 4585–4601 (2010) V.V. Zhivonitko, V.V. Telkki, K. Chernichenko, T. Repo, M. Leskela, V. Sumerin, I.V. Koptyug, J. Am. Chem. Soc. 136, 598–601 (2014) G. Sauer, D. Nasu, D. Tietze, T. Gutmann, S. Englert, O. Avrutina, H. Kolmar, G. Buntkowsky, Angew. Chem. 53, 12941–12945 (2014) V.V. Zhivonitko, K. Sorochkina, K. Chernichenko, B. Kotai, T. Foldes, I. Papai, V.V. Telkki, T. Repo, I. Koptyug, Phys. Chem. Chem. Phys. 18, 27784–27795 (2016) A.S. Kiryutin, G. Sauer, A.V. Yurkovskaya, H.H. Limbach, K.L. Ivanov, G. Buntkowsky, J. Phys. Chem. C 121, 9879–9888 (2017) A.J. Ruddlesden, R.E. Mewis, G.G.R. Green, A.C. Whitwood, S.B. Duckett, Organometallics 34, 2997–3006 (2015) C.M. Wong, M. Fekete, R. Nelson-Forde, M.R.D. Gatus, P.J. Rayner, A.C. Whitwood, S.B. Duckett, B.A. Messerle, Catal Sci Technol 8, 4925–4933 (2018) F. Shi, A.M. Coffey, K.W. Waddell, E.Y. Chekmenev, B.M. Goodson, Angew. Chem. 53, 7495–7498 (2014) A.S. Kiryutin, A.N. Pravdivtsev, K.L. Ivanov, Y.A. Grishin, H.M. Vieth, A.V. Yurkovskaya, J. Magn. Reson. 263, 79–91 (2016) R. Savka, H. Plenio, Dalton T 44, 891–893 (2015)