Substantial proportion of global streamflow less than three months old

Nature Geoscience - Tập 9 Số 2 - Trang 126-129 - 2016
Scott Jasechko1, James W. Kirchner2, J. M. Welker3, Jeffrey J. McDonnell4
1Department of Geography, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
2Department of Environmental System Sciences, ETH Zürich, Universitätstrasse 16, CH-8092 Zürich, Switzerland
3Department of Biological Sciences, University of Alaska Anchorage, 3211 Providence Drive, Anchorage, Alaska 99508, USA
4Global Institute for Water Security and School of Environment and Sustainability, University of Saskatchewan, 11 Innovation Boulevard, Saskatoon, Saskatchewan S7N 3H5, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Dunne, T. & Leopold, L. B. Water in Environmental Planning 818 (Freeman, 1978).

Horton, J. H. & Hawkins, R. H. Flow path of rain from the soil surface to the water table. Soil Sci. 100, 377–383 (1965).

McGuire, K. & McDonnell, J. J. A review and evaluation of catchment transit time modeling. J. Hydrol. 330, 543–563 (2006).

Dai, A. & Trenberth, K. E. Estimates of freshwater discharge from continents: latitudinal and seasonal variations. J. Hydrometeorol. 3, 660–687 (2002).

McDonnell, J. J. & Beven, K. Debates—The future of hydrological sciences: a (common) path forward? A call to action aimed at understanding velocities, celerities, and residence time distributions of the headwater hydrograph. Wat. Resour. Res. 50, 5342–5350 (2014).

Sklash, M. G. & Farvolden, R. N. The role of groundwater in storm runoff. Dev. Water Sci. 12, 45–65 (1979).

Brown, V. A., McDonnell, J. J., Burns, D. A. & Kendall, C. The role of event water, a rapid shallow flow component, and catchment size in summer stormflow. J. Hydrol. 217, 171–190 (1999).

Klaus, J. & McDonnell, J. J. Hydrograph separation using stable isotopes: review and evaluation. J. Hydrol. 505, 47–64 (2013).

McDonnell, J. J. et al. How old is the water? Open questions in catchment transit time conceptualization, modelling and analysis. Hydrol. Process. 24, 1745–1754 (2010).

Kirchner, J. W. Aggregation in environmental systems – Part 1: Seasonal tracer cycles quantify young water fractions, but not mean transit times, in spatially heterogeneous catchments. Hydrol. Earth Syst. Sci. (in the press).

Kirchner, J. W. Aggregation in environmental systems – Part 2: Catchment mean transit times and young water fractions under hydrologic nonstationarity. Hydrol. Earth Syst. Sci. (in the press).

Feng, X., Faiia, A. M. & Posmentier, E. S. Seasonality of isotopes in precipitation: a global perspective. J. Geophys. Res. 114, D08116 (2009).

Vachon, R. W., White, J. W. C., Gutmann, E. & Welker, J. M. Amount-weighted annual isotopic (δ18O) values are affected by the seasonality of precipitation: a sensitivity study. Geophys. Res. Lett. 34, L21707 (2007).

Małoszewski, P., Rauert, W., Stichler, W. & Herrmann, A. Application of flow models in an alpine catchment area using tritium and deuterium data. J. Hydrol. 66, 319–330 (1983).

DeWalle, D. R., Edwards, P. J., Swistock, B. R., Aravena, R. & Drimmie, R. J. Seasonal isotope hydrology of three Appalachian forest catchments. Hydrol. Process. 11, 1895–1906 (1997).

Kirchner, J. W., Feng, X. & Neal, C. Fractal stream chemistry and its implications for contaminant transport in catchments. Nature 403, 524–527 (2000).

Godsey, S. E. et al. Generality of fractal 1/f scaling in catchment tracer time series, and its implications for catchment travel time distributions. Hydrol. Process. 24, 1660–1671 (2010).

Stark, C. P. & Stieglitz, M. Hydrology: the sting in a fractal tail. Nature 403, 493–495 (2000).

Michel, R. L. et al. A simplified approach to analysing historical and recent tritium data in surface waters. Hydrol. Process. 29, 572–578 (2015).

Pulliainen, J. Mapping of snow water equivalent and snow depth in boreal and sub-arctic zones by assimilating space-borne microwave radiometer data and ground-based observations. Remote Sensing Environ. 101, 257–269 (2006).

Frisbee, M. D., Phillips, F. M., Campbell, A. R., Liu, F. & Sanchez, S. A. Streamflow generation in a large, alpine watershed in the southern Rocky Mountains of Colorado: is streamflow generation simply the aggregation of hillslope runoff responses? Wat. Resour. Res. 47, W06512 (2011).

Gleeson, T. & Manning, A. H. Regional groundwater flow in mountainous terrain: three-dimensional simulations of topographic and hydrogeologic controls. Wat. Resour. Res. 44, W10403 (2008).

Gleeson, T., Marklund, L., Smith, L. & Manning, A. H. Classifying the water table at regional to continental scales. Geophys. Res. Lett. 38, L05401 (2011).

Fan, Y., Li, H. & Miguez-Macho, G. Global patterns of groundwater table depth. Science 339, 940–943 (2013).

Gleeson, T., Moosdorf, N., Hartmann, J. & van Beek, L. P. H. A glimpse beneath earth’s surface: GLobal HYdrogeology MaPS (GLHYMPS) of permeability and porosity. Geophys. Res. Lett. 41, 3891–3898 (2014).

Maher, K. The dependence of chemical weathering rates on fluid residence time. Earth Planet. Sci. Lett. 294, 101–110 (2010).

Broxton, P. D., Troch, P. A. & Lyon, S. W. On the role of aspect to quantify water transit times in small mountainous catchments. Wat. Resour. Res. 45, W08427 (2009).

Sayama, T. & McDonnell, J. J. A new time-space accounting scheme to predict stream water residence time and hydrograph source components at the watershed scale. Wat. Resour. Res. 45, W07401 (2009).

Stewart, M. K., Morgenstern, U. & McDonnell, J. J. Truncation of stream residence time: how the use of stable isotopes has skewed our concept of streamwater age and origin. Hydrol. Process. 24, 1646–1659 (2010).

Gleeson, T., Befus, K., Jasechko, S., Luijendijk, E. & Cardenas, M. B. The global volume and distribution of modern groundwater. Nature Geosci. http://dx.doi.org/10.1038/ngeo2590 (2015).

Araguás-Araguás, L., Froehlich, K. & Rozanski, K. Deuterium and oxygen-18 isotope composition of precipitation and atmospheric moisture. Hydrol. Process. 14, 1341–1355 (2000).

Global Network for Isotopes in Precipitation (International Atomic Energy Agency, accessed November 2014); http://www-naweb.iaea.org/napc/ih/IHS_resources_gnip.html

Halder, J., Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. & Aggarwal, P. K. The Global Network of Isotopes in Rivers (GNIR): integration of water isotopes in watershed observation and riverine research. Hydrol. Earth Syst. Sci. 19, 3419–3431 (2015).

Global Network for Isotopes in Rivers (International Atomic Energy Agency, accessed November 2014); http://www-naweb.iaea.org/napc/ih/IHS_resources_gnir.html

Kendall, C. & Coplen, T. B. Distribution of oxygen-18 and deuterium in river waters across the United States. Hydrol. Process. 15, 1363–1393 (2001).

Welker, J. M. Isotopic (δ18O) characteristics of weekly precipitation collected across the USA: an initial analysis with application to water source studies. Hydrol. Process. 14, 1449–1464 (2000).

Birks, S. J. & Edwards, T. W. D. Atmospheric circulation controls on precipitation isotope–climate relations in western Canada. Tellus B 61, 566–576 (2009).

New, M., Lister, D., Hulme, M. & Makin, I. A high-resolution data set of surface climate over global land areas. Clim. Res. 21, 1–25 (2002).

Ramankutty, N., Evan, A. T., Monfreda, C. & Foley, J. A. Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob. Biogeochem. Cycles 22, GB1003 (2008).

Lehner, B. & Döll, P. Development and validation of a global database of lakes, reservoirs and wetlands. J. Hydrol. 296, 1–22 (2004).