Subsampling spectral clustering for stochastic block models in large-scale networks
Tài liệu tham khảo
Agarwal, 2005, Beyond pairwise clustering, 838
Alon, 2004
Amini, 2018, On semidefinite relaxations for the block model, Ann. Stat., 46, 149, 10.1214/17-AOS1545
Bhattacharyya, 2015, Subsampling bootstrap of count features of networks, Ann. Stat., 43, 2384, 10.1214/15-AOS1338
Binkiewicz, 2017, Covariate-assisted spectral clustering, Biometrika, 104, 361, 10.1093/biomet/asx008
Chen, 2006, Detecting functional modules in the yeast protein–protein interaction network, Bioinformatics, 22, 2283, 10.1093/bioinformatics/btl370
Chen, 2011, Large scale spectral clustering with landmark-based representation
Chung, 2006
Deng
Drineas, 2012, Fast approximation of matrix coherence and statistical leverage, J. Mach. Learn. Res., 13, 3475
Eden, 2017, Approximately counting triangles in sublinear time, SIAM J. Comput., 46, 1603, 10.1137/15M1054389
Feng, 2018, Faster matrix completion using randomized SVD, 608
Fortunato, 2010, Community detection in graphs, Phys. Rep., 486, 75, 10.1016/j.physrep.2009.11.002
Fowlkes, 2004, Spectral grouping using the Nyström method, IEEE Trans. Pattern Anal. Mach. Intell., 26, 214, 10.1109/TPAMI.2004.1262185
Gao, 2018, Community detection in degree-corrected block models, Ann. Stat., 46, 2153, 10.1214/17-AOS1615
Girvan, 2002, Community structure in social and biological networks, Proc. Natl. Acad. Sci., 99, 7821, 10.1073/pnas.122653799
Gonen, 2011, Counting stars and other small subgraphs in sublinear-time, SIAM J. Discrete Math., 25, 1365, 10.1137/100783066
Halko, 2011, Finding structure with randomness: probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53, 217, 10.1137/090771806
Harenberg, 2014, Community detection in large-scale networks: a survey and empirical evaluation, Wiley Interdiscip. Rev.: Comput. Stat., 6, 426, 10.1002/wics.1319
Hartigan, 1979, Algorithm as 136: a k-means clustering algorithm, J. R. Stat. Soc., Ser. C, Appl. Stat., 28, 100
Holland, 1983, Stochastic blockmodels: first steps, Soc. Netw., 5, 109, 10.1016/0378-8733(83)90021-7
Hu, 2020, Corrected Bayesian information criterion for stochastic block models, J. Am. Stat. Assoc., 115, 1771, 10.1080/01621459.2019.1637744
Illenberger, 2012, Estimating network properties from snowball sampled data, Soc. Netw., 34, 701, 10.1016/j.socnet.2012.09.001
Karrer, 2011, Stochastic blockmodels and community structure in networks, Phys. Rev. E, 83, 10.1103/PhysRevE.83.016107
Knuth, 1976, Big omicron and big omega and big theta, ACM SIGACT News, 8, 18, 10.1145/1008328.1008329
Krzakala, 2013, Spectral redemption in clustering sparse networks, Proc. Natl. Acad. Sci., 110, 20935, 10.1073/pnas.1312486110
Lancichinetti, 2009, Community detection algorithms: a comparative analysis, Phys. Rev. E, 80, 10.1103/PhysRevE.80.056117
LeCun, 1995, Comparison of learning algorithms for handwritten digit recognition, 53
Lee, 2017, Time-dependent community structure in legislation cosponsorship networks in the congress of the Republic of Peru, J. Complex Netw., 5, 127
Lei, 2015, Consistency of spectral clustering in stochastic block models, Ann. Stat., 43, 215, 10.1214/14-AOS1274
Li, 2011, Time and space efficient spectral clustering via column sampling, 2297
Li, 2020, Network cross-validation by edge sampling, Biometrika, 107, 257, 10.1093/biomet/asaa006
Lunde
Mackey, 2014, Matrix concentration inequalities via the method of exchangeable pairs, Ann. Probab., 42, 906, 10.1214/13-AOP892
Martin, 2018, Fast approximate spectral clustering for dynamic networks, 3423
Mukherjee, 2021, Two provably consistent divide-and-conquer clustering algorithms for large networks, Proc. Natl. Acad. Sci., 118, 10.1073/pnas.2100482118
Nepusz, 2012, Detecting overlapping protein complexes in protein-protein interaction networks, Nat. Methods, 9, 471, 10.1038/nmeth.1938
Newman, 2004, Finding and evaluating community structure in networks, Phys. Rev. E, 69, 10.1103/PhysRevE.69.026113
Ng, 2002, On spectral clustering: analysis and an algorithm, 849
Politis, 1999
Qin, 2013, Regularized spectral clustering under the degree-corrected stochastic blockmodel, Adv. Neural Inf. Process. Syst., 26
Rives, 2003, Modular organization of cellular networks, Proc. Natl. Acad. Sci., 100, 1128, 10.1073/pnas.0237338100
Rohe, 2011, Spectral clustering and the high-dimensional stochastic blockmodel, Ann. Stat., 39, 1878, 10.1214/11-AOS887
Snijders, 1999, Non-parametric standard errors and tests for network statistics, Connections, 22, 161
Tron, 2007, A benchmark for the comparison of 3-D motion segmentation algorithms, 1
Tropp, 2012, User-friendly tail bounds for sums of random matrices, Found. Comput. Math., 12, 389, 10.1007/s10208-011-9099-z
Vitter, 1985, Random sampling with a reservoir, ACM Trans. Math. Softw., 11, 37, 10.1145/3147.3165
Wang, 2021, Optimal subsampling for quantile regression in big data, Biometrika, 108, 99, 10.1093/biomet/asaa043
Wang, 2018, Optimal subsampling for large sample logistic regression, J. Am. Stat. Assoc., 113, 829, 10.1080/01621459.2017.1292914
Wang, 2019, Information-based optimal subdata selection for big data linear regression, J. Am. Stat. Assoc., 114, 393, 10.1080/01621459.2017.1408468
Wang, 2011, Approximate pairwise clustering for large data sets via sampling plus extension, Pattern Recognit., 44, 222, 10.1016/j.patcog.2010.08.005
Wang, 2017, Likelihood-based model selection for stochastic block models, Ann. Stat., 45, 500, 10.1214/16-AOS1457
Yan, 2009, Fast approximate spectral clustering, 907
Yu, 2022, Optimal distributed subsampling for maximum quasi-likelihood estimators with massive data, J. Am. Stat. Assoc., 117, 265, 10.1080/01621459.2020.1773832
Yu, 2015, A useful variant of the Davis–Kahan theorem for statisticians, Biometrika, 102, 315, 10.1093/biomet/asv008
Zhang, 2022, Randomized spectral clustering in large-scale stochastic block models, J. Comput. Graph. Stat., 31, 887, 10.1080/10618600.2022.2034636
Zhao, 2011, Community extraction for social networks, Proc. Natl. Acad. Sci., 108, 7321, 10.1073/pnas.1006642108
Zhao, 2012, Consistency of community detection in networks under degree-corrected stochastic block models, Ann. Stat., 40, 2266, 10.1214/12-AOS1036