Suboptimal network coding subgraph algorithms for 5G minimum-cost multicast networks

Zhejiang University Press - Tập 19 - Trang 662-673 - 2018
Feng Wei1, Wei-xia Zou1,2
1MOE Key Lab of Universal Wireless Communications, Beijing University of Posts and Telecommunications, Beijing, China
2State Key Lab of Millimeter Waves, Southeast University, Nanjing, China

Tóm tắt

To reduce the transmission cost in 5G multicast networks that have separate control and data planes, we focus on the minimum-power-cost network-coding subgraph problem for the coexistence of two multicasts in wireless networks. We propose two suboptimal algorithms as extensions of the Steiner tree multicast. The critical 1-cut path eliminating (C1CPE) algorithm attempts to find the minimum-cost solution for the coexistence of two multicast trees with the same throughput by reusing the links in the topology, and keeps the solution decodable by a coloring process. For the special case in which the two multicast trees share the same source and destinations, we propose the extended selective closest terminal first (E-SCTF) algorithm out of the C1CPE algorithm. Theoretically the complexity of the E-SCTF algorithm is lower than that of the C1CPE algorithm. Simulation results show that both algorithms have superior performance in terms of power cost and that the advantage is more evident in networks with ultra-densification.

Tài liệu tham khảo

Agyapong PK, Iwamura M, Staehle D, et al., 2014. Design considerations for a 5G network architecture. IEEE Commun Mag, 52(11):65–75. https://doi.org/10.1109/MCOM.2014.6957145 Akyildiz IF, Nie S, Lin SC, et al., 2016. 5G roadmap: 10 key enabling technologies. Comput Netw, 106:17–48. https://doi.org/10.1016/j.comnet.2016.06.010 Ali E, Ismail M, Nordin R, et al., 2017. Beamforming techniques for massive MIMO systems in 5G: overview, classification, and trends for future research. Front Inform Technol Electron Eng, 18(6):753–772. https://doi.org/10.1631/FITEE.1601817 Andrews JG, Buzzi S, Choi W, et al., 2014. What will 5G be? IEEE J Sel Areas Commun, 32(6):1065–1082. https://doi.org/10.1109/JSAC.2014.2328098 Baldemair R, Irnich T, Balachandran K, et al., 2015. Ultradense networks in millimeter-wave frequencies. IEEE Commun Mag, 53(1):202–208. https://doi.org/10.1109/MCOM.2015.7010535 Chen SZ, Kang SL, 2018. A tutorial on 5G and the progress in China. Front Inform Technol Electron Eng, 19(3):309–321. https://doi.org/10.1631/FITEE.1800070 Chen SZ, Qin F, Hu B, et al., 2016. User-centric ultra-dense networks for 5G: challenges, methodologies, and directions. IEEE Wirel Commun, 23(2):78–85. https://doi.org/10.1109/MWC.2016.7462488 Chiang M, Low SH, Calderbank AR, et al., 2007. Layering as optimization decomposition: a mathematical theory of network architectures. Proc IEEE, 95(1):255–312. https://doi.org/10.1109/JPROC.2006.887322 Choi J, 2015. Iterative methods for physical-layer multicast beamforming. IEEE Trans Wirel Commun, 14(9):5185–5196. https://doi.org/10.1109/TWC.2015.2434374 He SW, Huang YM, Wang HM, et al., 2014. Leakage-aware energy-efficient beamforming for heterogeneous multicell multiuser systems. IEEE J Sel Areas Commun, 32(6): 1268–1281. https://doi.org/10.1109/JSAC.2014.2328142 Heindlmaier M, Lun DS, Traskov D, et al., 2011. Wireless inter-session network coding—an approach using virtual multicasts. IEEE Int Conf on Communications, p.1–5. https://doi.org/10.1109/icc.2011.5963472 Ho T, Medard M, Koetter R, et al., 2006. A random linear network coding approach to multicast. IEEE Trans Inform Theory, 52(10):4413–4430. https://doi.org/10.1109/TIT.2006.881746 Jiang DD, Xu ZZ, Li WP, et al., 2015. Network coding-based energy-efficient multicast routing algorithm for multi-hop wireless networks. J Syst Softw, 104:152–165. https://doi.org/10.1016/j.jss.2015.03.006 Kotronis V, Dimitropoulos X, Ager B, 2012. Outsourcing the routing control logic: better Internet routing based on SDN principles. Proc 11th ACM Workshop on Hot Topics in Networks, p.55–60. https://doi.org/10.1145/2390231.2390241 Kulkarni MN, Ghosh A, Andrews JG, 2016. A comparison of MIMO techniques in downlink millimeter wave cellular networks with hybrid beamforming. IEEE Trans Commun, 64(5):1952–1967. https://doi.org/10.1109/TCOMM.2016.2542825 Li JZ, Ai B, He RS, et al., 2017. Indoor massive multiple-input multiple-output channel characterization and performance evaluation. Front Inform Technol Electron Eng, 18(6):773–787. https://doi.org/10.1631/FITEE.1700021 Li SY, Sun W, Hua CC, 2016. Optimal resource allocation for heterogeneous traffic in multipath networks. Int J Commun Syst, 29(1):84–98. https://doi.org/10.1002/dac.2800 Lun DS, Ratnakar N, Koetter R, et al., 2005. Achieving minimum-cost multicast: a decentralized approach based on network coding. Proc IEEE 24th Annual Joint Conf of IEEE Computer and Communications Societies, p.1607–1617. https://doi.org/10.1109/INFCOM.2005.1498443 Ma Z, Zhang ZQ, Ding ZG, et al., 2015. Key techniques for 5G wireless communications: network architecture, physical layer, and MAC layer perspectives. Sci China Inform Sci, 58(4):1–20. https://doi.org/10.1007/s11432-015-5293-y Rajawat K, Gatsis N, Giannakis GB, 2011. Cross-layer designs in coded wireless fading networks with multicast. IEEE/ACM Trans Netw, 19(5):1276–1289. https://doi.org/10.1109/TNET.2011.2109010 Ramanathan S, 1996. Multicast tree generation in networks with asymmetric links. IEEE/ACM Trans Netw, 4(4):558–568. https://doi.org/10.1109/90.532865 Rappaport TS, Murdock JN, Gutierrez F, 2011. State of the art in 60-GHz integrated circuits and systems for wireless communications. Proc IEEE, 99(8):1390–1436. https://doi.org/10.1109/JPROC.2011.2143650 Rappaport TS, Sun S, Mayzus R, et al., 2013. Millimeter wave mobile communications for 5G cellular: it will work! IEEE Access, 1:335–349. https://doi.org/10.1109/ACCESS.2013.2260813 Ribeiro A, Giannakis G B, 2010. Separation principles in wireless networking. IEEE Trans Inform Theory, 56(9): 4488–4505. https://doi.org/10.1109/TIT.2010.2053897 Riemensberger M, Utschick W, 2014. A polymatroid flow model for network coded multicast in wireless networks. IEEE Trans Inform Theory, 60(1):443–460. https://doi.org/10.1109/TIT.2013.2287498 Rusek F, Persson D, Lau BK, et al., 2013. Scaling up MIMO: opportunities and challenges with very large arrays. IEEE Signal Process Mag, 30(1):40–60. https://doi.org/10.1109/MSP.2011.2178495 Shokri-Ghadikolaei H, Fischione C, 2016. The transitional behavior of interference in millimeter wave networks and its impact on medium access control. IEEE Trans Commun, 64(2):723–740. https://doi.org/10.1109/TCOMM.2015.2509073 Stai E, Loulakis M, Papavassiliou S, 2015. Cross-layer design of wireless multihop networks over stochastic channels with time-varying statistics. IEEE Trans Wirel Commun, 14(12):6967–6980. https://doi.org/10.1109/TWC.2015.2462845 Su LY, Yang CY, Chih-Lin I, 2016. Energy and spectral efficient frequency reuse of ultra dense networks. IEEE Trans Wirel Commun, 15(8):5384–5398. https://doi.org/10.1109/TWC.2016.2557790 Szabó D, Németh F, Sonkoly B, et al., 2015. Towards the 5G revolution: a software defined network architecture exploiting network coding as a service. Proc ACM Conf on Special Interest Group on Data Communication, p.105–106. Wang C, Guo ST, Yang YY, et al., 2016. An optimization framework for mobile data collection in energyharvesting wireless sensor networks. IEEE Trans Mobile Comput, 15(12):2969–2986. https://doi.org/10.1109/TMC.2016.2533390 Wang CC, Shroff NB, 2010. Pairwise intersession network coding on directed networks. IEEE Trans Inform Theory, 56(8):3879–3900. https://doi.org/10.1109/TIT.2010.2050932 Wang J, Li Y, Wang XM, 2007. Network coding based multicast in Internet. Int Conf on Parallel Processing Workshops, p.44. https://doi.org/10.1109/ICPPW.2007.58 Wei F, Zou WX, 2017. Steiner-tree-based 2-cut-set network coding subgraph algorithm in wireless multicast network. Proc Int Conf in Communications, Signal Processing, and Systems, p.373–381. https://doi.org/10.1007/978-981-10-3229-5_40