Submicrosecond strength of ultrafine-grained materials
Tóm tắt
Từ khóa
Tài liệu tham khảo
M. A. Meyers, D. J. Benson, O. Vohringer, et al., “Constitutive Description of Dynamic Deformation: Physically-Based Mechanisms,” Mater. Sci. Engng 322(1–2), 194–216 (2002).
R. V. Valiev and I. V. Aleksandov, Nanostructure Materials Obtained by Intensive Plastic Strain (Logos, Moscow, 2002) [in Russian].
G. I. Kanel, S. V. Razorenov, A. V. Utkin, and V. E. Fortov, Shock-Wave Phenomena in Condensed Media (Yanus-K, Moscow, 1996) [in Russian].
G. I. Kanel, S. V. Razorenov, and V. E. Fortov, “Submicrosecond Strength of Materials,” Izv. Akad. Nauk. Mekh. Tverd. Tela, No. 4, 86–111 (2005) [Mech. Solids (Engl. Transl.) 40 (4), 69–89 (2005)].
L. M. Barker and R. E. Hollenbach, “Laser Interferometer for Measuring High Velocities of Any Reflecting Surface,” J. Appl. Phys. 43(11), 4669–4675 (1972).
G. V. Garkushin, S. V. Razorenov, and G. I. Kanel, “Influence of Structure Factors on Submicrosecond Strength of Aluminum Alloy D16T,” Zh. Tekh. Fiz. 78(11), 53–59 (2008) [Tech. Phys. (Engl. Transl.) 53 (11), 1441–1446 (2008)].
G. I. Kanel, “Dynamic Strength of Materials,” Fatigue Fract. Engng Mater. Struct. 22(11), 1011–1019 (1999).
G. I. Kanel, “Distortion of the Wave Profiles in an Elastoplastic Body upon Spalling,” Zh. Prikl. Mekh. Tekh. Fiz. 42(2), 194–198 (2001) [J. Appl.Mech. Tech. Phys. (Engl. Transl.) 42 (2), 358–362 (2001)].
M. Hockauf, L.W. Meyer, T. Halle, et al., “Mechanical Properties and Microstructural Changes of Ultrafine-Grained AA6065T6 during High-Cycle Fatigue,” Int. J.Mat. Res. 97(10), 1392–1400 (2006).
L. W. Meyer, M. Hockauf, L. Krüeger, and I. Schneider, “Compressive Behavior of Ultrafine-Grained AA6065T6 over a Wide Range of Strains and Strain Rates,” Int. J.Mat. Res. 98(3), 191–199 (2007).
G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, New York, 2004).
S. V. Razorenov, A. S. Savinykh, E. B. Zaretskii, et al., “Effect of Preliminary Strain Hardening on the Flow Stress of Titanium and a Titanium Alloy during Shock Compression,” Fiz. Tverd. Tela 47(4), 639–645 (2005) [Phys. Solid State (Engl. Transl.) 47 (4), 663–669 (2005)].
A. Kumar and R. G. Kumble, “Viscous Drag on Dislocations at High Strain Rates in Copper,” J. Appl. Phys. 40(9), 3475–3480 (1969).
V. I. Alshits and V. L. Indenbom, “Dynamical Drag on Dislocations,” Uspekhi Fiz. Nauk, 115(1), 3–38 (1975) [Sov. Phys. Usp. (Engl. Transl) 18, 1 (1975)].
L. Kr ueger, L. W. Meyer, S. V. Razorenov, and G. I. Kanel, “Investigation of Dynamic Flow and Strength Properties of Ti-6-22-22S at Normal and Elevated Temperatures,” Int. J. Impact Engng 28(8), 877–890 (2003).
P. B. Trivedi, J. R. Asay, Y. M. Gupta, and D. P. Field, “Influence of Grain Size on the Tensile Response of Aluminum under Plate-Impact Loading,” J. Appl. Phys. 102, 084513 (9) (2007).