Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng không chí mạng của tảo độc Karlodinium veneficum đến các giai đoạn sống sớm của cá bảy màu (Danio rerio)
Tóm tắt
Các loài tảo đơn bào thuộc chi Karlodinium là những loài gây độc cho cá, sản xuất ra các độc tố bao gồm karlotoxins và karmitoxins. Karlotoxins cho thấy hoạt tính tan máu và độc tế bào, đã được liên kết với tỷ lệ tử vong ở cá. Nghiên cứu này đánh giá tác động của các độc tố thải ra môi trường từ chủng Karlodinium veneficum K10 (Đồng bằng Ebro, Địa Trung Hải phía Tây Bắc) lên các giai đoạn đầu đời của cá bảy màu (Danio rerio). Các chiết xuất từ dịch lỏng K10 chứa các loại độc tố đơn sulfat hóa KmTx-10, KmTx-11, KmTx-12, KmTx-13 và một dạng di sulfat hóa của KmTx-10. Tỷ lệ tử vong trứng đã được quan sát đối với nồng độ karlotoxin lớn hơn 2,69 μg L−1. Đối với nồng độ 1,35 μg L−1, 87% số lượng dị thường phát triển đã được ghi nhận (tất cả các nồng độ đều được biểu thị dưới dạng tương đương KmTx-2). Ấu trùng 8 ngày sau thụ tinh tiếp xúc với 1,35 µg L−1 có tổn thương biểu mô với 80% số tế bào ở giai đoạn chết rụng sớm. Kết quả của chúng tôi cho thấy rằng các dịch chiết với nồng độ thấp của KmTxs tạo ra cả tác động gây chết và không gây chết ở các giai đoạn đầu của cá. Hơn nữa, sự chết rụng tế bào được kích thích ở nồng độ thấp chỉ 0,01 μg L−1. Điều này đặc biệt quan trọng vì những tác động tiêu cực lâu dài do tiếp xúc với nồng độ thấp của các chất này có thể ảnh hưởng đến cá hoang dã và cá nuôi.
Từ khóa
#Karlodinium veneficum #karlotoxin #Danio rerio #tác động độc tố #giai đoạn sống sớm #chết rụng tế bào.Tài liệu tham khảo
Adolf JE, Krupatkina D, Bachvaroff T, Place AR (2007) Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6:400–412. https://doi.org/10.1016/j.hal.2006.12.003
Adolf JE, Bachvaroff TR, Deeds JR, Place AR (2015) Ichthyotoxic Karlodinium veneficum (Ballantine) J Larsen in the Upper Swan River Estuary (Western Australia): ecological conditions leading to a fish kill. Harmful Algae 48:83–93. https://doi.org/10.1016/j.hal.2015.07.006
Bachvaroff TR, Adolf JE, Squier AH et al (2008) Characterization and quantification of karlotoxins by liquid chromatography-mass spectrometry. Harmful Algae 7:473–484. https://doi.org/10.1016/j.hal.2007.10.003
Bachvaroff TR, Adolf JE, Place AR (2009) Strain variation in karlodinium veneficum (dinophyceae): toxin profiles, pigments, and growth characteristics. J Phycol 45:137–153. https://doi.org/10.1111/j.1529-8817.2008.00629.x
Binzer SB, Varga E, Andersen AJC et al (2020) Karmitoxin production by Karlodinium armiger and the effects of K. armiger and karmitoxin towards fish. Harmful Algae 99:101905. https://doi.org/10.1016/j.hal.2020.101905
Cai P, He S, Zhou C et al (2016) Two new karlotoxins found in Karlodinium veneficum (strain GM2) from the East China Sea. Harmful Algae 58:66–73. https://doi.org/10.1016/j.hal.2016.08.001
Chan PK, Cheng SH (2003) Cadmium-induced ectopic apoptosis in zebrafish embryos. Arch Toxicol 77:69–79. https://doi.org/10.1007/s00204-002-0411-1
Chen G, Wang L, Li W et al (2020) Nodularin induced oxidative stress contributes to developmental toxicity in zebrafish embryos. Ecotoxicol Environ Saf 194:110444. https://doi.org/10.1016/j.ecoenv.2020.110444
Deeds JR, Terlizzi DE, Adolf JE et al (2002) Toxic activity from cultures of Karlodinium micrum (=Gyrodinium galatheanum) (Dinophyceae) - a dinoflagellate associated with fish mortalities in an estuarine aquaculture facility. Harmful Algae 1:169–189. https://doi.org/10.1016/S1568-9883(02)00027-6
Deeds JR, Reimschuessel R, Place AR (2006) Histopathological effects in fish exposed to the toxins from Karlodinium micrum. J Aquat Anim Health 18:136–148. https://doi.org/10.1577/H05-027.1
Deeds JR, Hoesch RE, Place AR, Kao JPY (2015) The cytotoxic mechanism of karlotoxin 2 (KmTx 2) from Karlodinium veneficum (Dinophyceae). Aquat Toxicol 159:148–155. https://doi.org/10.1016/j.aquatox.2014.11.028
Dietrich J, Schindler M, Lampen A, et al (2020) Comparison of long-term versus short-term effects of okadaic acid on the apoptotic status of human HepaRG cells. ChemBiol Interact 317https://doi.org/10.1016/j.cbi.2020.108937
Félix LM, Antunes LM, Coimbra AM (2014) Ketamine NMDA receptor-independent toxicity during zebrafish (Danio rerio) embryonic development. Neurotoxicol Teratol 41:27–34. https://doi.org/10.1016/j.ntt.2013.11.005
Ferreiro SF, Vilariño N, Carrera C et al (2017) In vivo cardiomyocyte response to YTX- and AZA-1-induced damage: autophagy versus apoptosis. Arch Toxicol 91:1859–1870. https://doi.org/10.1007/s00204-016-1862-0
Garcia-Käufer M, Gartiser S, Hafner C et al (2014) Genotoxic and teratogenic effect of freshwater sediment samples from the Rhine and Elbe River (Germany) in zebrafish embryo using a multi-endpoint testing strategy. Environ Sci Pollut Res 22:16341–16357. https://doi.org/10.1007/s11356-014-3894-4
Goshorn D, Deeds J, Tango P, Poukish C, Place AR, McGinty M, Butler W, Luckett C, Magnien R (2002) Occurrence of Karlodinium micrum and its association with fish kills in Maryland estuaries. In: Steidinger KA, Landsberg JH, Tomas CR, Vargo GA, editors. Harmful Algae 2002; Proceedings of the Xth International Conference on Harmful Algae; Florida Fish and Wildlife Conservation Commission and Intergovernmental Oceanographic Commission of UNESCO; 2004. pp 361–363
Guan W, Si R, Li X et al (2018) Interactive effect of nitrogen source and high CO2 concentration on the growth of the dinoflagellate Alexandrium tamarense and its toxicity to zebrafish (Danio rerio) embryos. Mar Pollut Bull 133:626–635. https://doi.org/10.1016/j.marpolbul.2018.06.024
Guillard RRL, Hargraves PE (1993) Stichochrysis immobilis is a diatom, not a chyrsophyte. Phycologia 32:234–236
Kempton JW, Lewitus AJ, Deeds JR, Law JM, Place AR (2002) Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae 1(2):233–241. https://doi.org/10.1016/s1568-9883(02)00015-x
Krock B, Busch JA, Tillmann U, et al (2017) LC-MS/MS detection of karlotoxins reveals new variants in strains of the marine dinoflagellate karlodinium veneficum from the ebro delta (NW mediterranean). Mar Drugs 15. https://doi.org/10.3390/md15120391
Lim HC, Leaw CP, Tan TH et al (2014) A bloom of Karlodinium australe (Gymnodiniales, Dinophyceae) associated with mass mortality of cage-cultured fishes in West Johor Strait, Malaysia. Harmful Algae 40:51–62. https://doi.org/10.1016/j.hal.2014.10.005
López-Rosales L, García-Camacho F, Sánchez-Mirón A, Chisti Y (2015) An optimal culture medium for growing Karlodinium veneficum: progress towards a microalgal dinoflagellate-based bioprocess. Algal Res 10:177–182. https://doi.org/10.1016/j.algal.2015.05.006
López-Rosales L, García-Camacho F, Sánchez-Mirón A et al (2016) Pilot-scale bubble column photobioreactor culture of a marine dinoflagellate microalga illuminated with light emission diodes. Bioresour Technol 216:845–855. https://doi.org/10.1016/j.biortech.2016.06.027
Mooney BD, De Salas M, Hallegraeff GM, Place AR (2009) Survey for karlotoxin production in 15 species of gymnodinioid dinoflagellates (kareniaceae, dinophyta). J Phycol 45:164–175. https://doi.org/10.1111/j.1529-8817.2008.00630.x
Mooney BD, Hallegraeff GM, Place AR (2010) Ichthyotoxicity of four species of gymnodinioid dinoflagellates (Kareniaceae, Dinophyta) and purified karlotoxins to larval sheepshead minnow. Harmful Algae 9:557–562. https://doi.org/10.1016/j.hal.2010.04.005
Peng J, Place AR, Yoshida W et al (2010) Structure and absolute configuration of karlotoxin-2, an ichthyotoxin from the marine dinoflagellate karlodinium veneficum. J Am Chem Soc 132:3277–3279. https://doi.org/10.1021/ja9091853
Pitcher GC, Louw DC (2021) Harmful algal blooms of the Benguela eastern boundary upwelling system. Harmful Algae 102:101898. https://doi.org/10.1016/j.hal.2020.101898
Place AR, Bowers HA, Bachvaroff TR et al (2012) Karlodinium veneficum—the little dinoflagellate with a big bite. Harmful Algae 14:179–195. https://doi.org/10.1016/j.hal.2011.10.021
Pradhan B, Ki J-S (2022) Phytoplankton Toxins and Their Potential Therapeutic Applications: A Journey toward the Quest for Potent Pharmaceuticals. Marine Drugs 20(4):271. https://doi.org/10.3390/md20040271
Qi M, Dang Y, Xu Q et al (2016) Microcystin-LR induced developmental toxicity and apoptosis in zebrafish (Danio rerio) larvae by activation of ER stress response. Chemosphere 157:166–173. https://doi.org/10.1016/j.chemosphere.2016.05.038
Rasmussen SA, Binzer SB, Hoeck C et al (2017) Karmitoxin: an amine-containing polyhydroxy-polyene toxin from the marine dinoflagellate Karlodinium armiger. J Nat Prod 80:1287–1293. https://doi.org/10.1021/acs.jnatprod.6b00860
Riobó P, Paz B, Franco JM et al (2008) Proposal for a simple and sensitive haemolytic assay for palytoxin. Toxicological dynamics, kinetics, ouabain inhibition and thermal stability. Harmful Algae 7:415–429. https://doi.org/10.1016/j.hal.2007.09.001
Sakamoto S, Lim WA, Lu D et al (2021) Harmful algal blooms and associated fisheries damage in East Asia: current status and trends in China, Japan, Korea and Russia. Harmful Algae 102:101787. https://doi.org/10.1016/j.hal.2020.101787
Takeshita S, Inoue N, Ueyama T et al (2000) Shear stress enhances glutathione peroxidase expression in endothelial cells. Biochem Biophys Res Commun 273:66–71
Van Wagoner RM, Deeds JR, Satake M et al (2008) Isolation and characterization of karlotoxin 1, a new amphipathic toxin from Karlodinium veneficum. Tetrahedron Lett 49:6457–6461. https://doi.org/10.1016/j.tetlet.2008.08.103
Van Wagoner RM, Deeds JR, Tatters AO et al (2010) Structure and relative potency of several karlotoxins from Karlodinium veneficum. J Nat Prod 73:1360–1365. https://doi.org/10.1021/np100158r
von Hellfeld R, Brotzmann K, Baumann L et al (2020) Adverse effects in the fish embryo acute toxicity (FET) test: a catalogue of unspecific morphological changes versus more specific effects in zebrafish (Danio rerio) embryos. Environ Sci Eur 32:122. https://doi.org/10.1186/s12302-020-00398-3
Waggett RJ, Tester PA, Place AR (2008) Anti-grazing properties of the toxic dinoflagellate Karlodinium veneficum during predator-prey interactions with the copepod Acartia tonsa. Mar Ecol Prog Ser 366:31–42. https://doi.org/10.3354/meps07518
Wang X, Feng X, Zhuang Y et al (2019) Effects of ocean acidification and solar ultraviolet radiation on physiology and toxicity of dinoflagellate Karenia mikimotoi. Harmful Algae 81:1–9. https://doi.org/10.1016/j.hal.2018.11.013
Wang R, Wu J, Zhou S et al (2020) A preliminary study on the allelopathy and toxicity of the dinoflagellate Karlodinium veneficum. Mar Pollut Bull 158:111400. https://doi.org/10.1016/j.marpolbul.2020.111400
Waters AL, Oh J, Place AR, Hamann MT (2015) Stereochemical studies of the karlotoxin class using NMR spectroscopy and DP4 chemical-shift analysis: insights into their mechanism of action. Angew Chemie - Int Ed 54:15705–15710. https://doi.org/10.1002/anie.201507418
Wolny JL, McCollough CB, Rosales DS, Pitula JS (2022) Harmful algal bloom species in the St. Martin River: surveying the Headwaters of Northern Maryland’s coastal bays. J Coast Res 38:86–98. https://doi.org/10.2112/JCOASTRES-D-21-00044.1
Zeng C, Sun H, Xie P et al (2014) The role of apoptosis in MCLR-induced developmental toxicity in zebrafish embryos. Aquat Toxicol 149:25–32. https://doi.org/10.1016/j.aquatox.2014.01.021
Zhang Y, Chen X, Gueydan C, Han J (2018) Plasma membrane changes during programmed cell deaths. Cell Res 28:9–21. https://doi.org/10.1038/cr.2017.133