Suberin: the biopolyester at the frontier of plants

José Graça1
1Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

Beisson, 2012, Solving the puzzles of cutin and suberin polymer biosynthesis, Curr. Opin. Plant Biol., 15, 329, 10.1016/j.pbi.2012.03.003

Bernards, 2002, Demystifying suberin, Canad. J. Bot. Revue, 80, 227, 10.1139/b02-017

Bernards, 1998, The macromolecular aromatic domain in suberized tissue: a changing paradigm, Phytochemistry, 47, 915, 10.1016/s0031-9422(98)80052-6

Bernards, 1995, Hydroxycinnamic acid-derived polymers constitute the polyaromatic domain of suberin, J. Biol. Chem., 270, 7382, 10.1074/jbc.270.13.7382

Bernards, 2001, The poly(phenolic) domain of potato suberin: a non-lignin cell wall bio-polymer, Phytochemistry, 57, 1115, 10.1016/s0031-9422(01)00046-2

Borgolivier, 1993, Lignin, suberin, phenolic-acids and tyramine in the suberized, wound-induced potato periderm, Phytochemistry, 32, 601, 10.1016/s0031-9422(00)95143-4

Coquet, 2005, Quercus suber cork extract displays a tensor and smoothing effect on human skin: an in vivo study, Drugs Exp. Clin. Res., 31, 89

Cordeiro, 1999, Urethanes and polyurethanes from suberin 2: synthesis and characterization, Ind. Crops Prod., 10, 1, 10.1016/s0926-6690(98)00029-6

Dantas, 2013, The lanky and the corky: fire-escape strategies in savanna woody species, J. Ecol., 101, 1265, 10.1111/1365-2745.12118

De Geus, 2010, Performance polymers from renewable monomers: high molecular weight poly(pentadecalactone) for fiber applications, Polym. Chem., 1, 525, 10.1039/b9py00360f

Delaux, 2012, Molecular and biochemical aspects of plant terrestrialization, Perspect. Plant Ecol. Evol. Syst., 14, 49, 10.1016/j.ppees.2011.09.001

Douliez, 2005, Glycerol derivatives of cutin and suberin monomers: Synthesis and self-assembly, Biomacromolecules, 6, 30, 10.1021/bm049325o

Evert, 2006, Esau's Plant Anatomy: Meristems, Cells, and Tissues of the Plant Body: Their Structure, Function, and Development, 10.1002/0470047380

Ferreira, 2014, Unveiling the dual role of the cholinium hexanoate ionic liquid as solvent and catalyst in suberin depolymerisation, RSC Adv., 4, 2993, 10.1039/c3ra45910a

Franke, 2012, Suberin goes genomics: use of a short living plant to investigate a long lasting polymer, Front. Plant Sci., 3, 10.3389/fpls.2012.00004

Garbow, 1989, C-13 Nuclear magnetic-resonance study of suberized potato cell-wall, Plant Physiol., 90, 783, 10.1104/pp.90.3.783

Gil, 1999, Very high-resolution H-1 MAS NMR of a natural polymeric material, Solid State Nucl. Magn. Reson., 15, 59, 10.1016/s0926-2040(99)00047-8

Gil, 1997, A C-13 solid state nuclear magnetic resonance spectroscopic study of cork cell wall structure: the effect of suberin removal, Int. J. Biol. Macromol., 20, 293, 10.1016/s0141-8130(97)00029-9

Gilson, 1890, La subérine e les cellules du liège, La Cell. (Louvain), 6, 63

Graça, 2010, Hydroxycinnamates in suberin formation, Phytochem. Rev., 9, 85, 10.1007/s11101-009-9138-4

Graça, 2015, Partial depolymerization of genetically modified potato tuber periderm reveals intermolecular linkages in suberin polyester, Phytochemistry, 117, 209, 10.1016/j.phytochem.2015.06.010

Graça, 1997, Cork suberin: a glyceryl based polyester, Holzforschung, 51, 225, 10.1515/hfsg.1997.51.3.225

Graça, 1998, Feruloyl esters of omega-hydroxyacids in cork suberin, J. Wood Chem. Technol., 18, 207, 10.1080/02773819809349577

Graça, 1999, Glyceryl-acyl and aryl-acyl dimers in Pseudotsuga menziesii bark suberin, Holzforschung, 53, 397, 10.1515/hf.1999.066

Graça, 2000a, Methanolysis of bark suberins: analysis of glycerol and acid monomers, Phytochem. Anal., 11, 45, 10.1002/(sici)1099-1565(200001/02)11:145::aid-pca4813.0.co;2-8

Graça, 2000b, Suberin structure in potato periderm: glycerol, long-chain monomers, and glyceryl and feruloyl dimers, J. Agric. Food Chem., 48, 5476, 10.1021/jf0006123

Graça, 2006a, Glycerol-derived ester oligomers from cork suberin, Chem. Phys. Lipids, 144, 96, 10.1016/j.chemphyslip.2006.08.001

Graça, 2006b, Linear aliphatic dimeric esters from cork suberin, Biomacromolecules, 7, 2003, 10.1021/bm060174u

Graça, 2007, Suberin: a biopolyester of plants' skin, Macromol. Biosci., 7, 128, 10.1002/mabi.200600218

Guillemonat, 1949, Le liége matière première d'une industrie chimique, Revue du Bois, 4, 4

Guillemonat, 1960, Progrès récents dans l'étude de la constitution chimique du liège, Ann. Fac. Sci. Marseille, 30, 43

Heinäemäeki, 2015, Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings, Int. J. Pharm., 489, 91, 10.1016/j.ijpharm.2015.04.066

Holloway, 1983, Some variations in the composition of suberin from the cork layers of higher-plants, Phytochemistry, 22, 495, 10.1016/0031-9422(83)83033-7

Huf, 2011, Biotechnological synthesis of long-chain dicarboxylic acids as building blocks for polymers, Europ. J. Lipid Sci. Technol., 113, 548, 10.1002/ejlt.201000112

Jensen, 1952, Studies on suberin. IV. Isolation of phloionic acid from suberin of Quercus suber, Paperi ja Puu, 34B, 467

Koch, 2009, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials, Philos. Trans. R. Soc., 367, 1487, 10.1098/rsta.2009.0022

Kolattukudy, 2001, Polyesters in Higher Plants, Biopolyesters, 1, 10.1007/3-540-40021-4_1

Kolattukudy, 2002, Suberin from Plants, Biopolymers. Polyesters I., 41

Kolattukudy, 1989, Chemistry, biochemistry, and function of suberin and associated waxes, Natural Products of Woody Plants, 304, 10.1007/978-3-642-74075-6_11

Kolattukudy, 1975, Determination of structure and composition of suberin from roots of carrot, parsnip, rutabaga, turnip, red beet, and sweet-potato by combined gas-liquid-chromatography and mass-spectrometry, Plant Physiol., 55, 567, 10.1104/pp.55.3.567

Krizková, 1999, Antimutagenicity of a suberin extract from Quercus suber cork, Mut. Res. Genet. Toxicol. Environ. Mutagen., 446, 225, 10.1016/s1383-5718(99)00190-4

Lapierre, 1996, The phenolic domain of potato suberin: structural comparison with lignins, Phytochemistry, 42, 949, 10.1016/0031-9422(96)00097-0

Lulai, 1998, Differential deposition of suberin phenolic and aliphatic domains and their roles in resistance to infection during potato tuber (Solanum tuberosum L.) wound-healing, Physiol. Mol. Plant Pathol., 53, 209, 10.1006/pmpp.1998.0179

Lulai, 1994, Techniques for detecting and measuring developmental and maturational changes in tuber native periderm, Am. Potato J., 71, 489, 10.1007/bf02851322

Marques, 2013, Lignin monomeric composition of corks from the barks of Betula pendula, Quercus suber and Quercus cerris determined by Py-GC-MS/FID, J. Anal. Appl. Pyrolysis, 100, 88, 10.1016/j.jaap.2012.12.001

Mattinen, 2009, Structure of the Polyphenolic Component of Suberin Isolated from Potato (Solanum tuberosum var. Nikola), J. Agric. Food Chem., 57, 9747, 10.1021/jf9020834

Molina, 2009, Identification of an arabidopsis feruloyl-coenzyme a transferase required for suberin synthesis, Plant Physiol., 151, 1317, 10.1104/pp.109.144907

Negrel, 1996, Ether-linked ferulic acid amides in natural and wound periderms of potato tuber, Phytochemistry, 43, 1195, 10.1016/s0031-9422(96)00500-6

Neto, 1996, Isolation and characterization of a lignin-like polymer of the cork of Quercus suber L, Holzforschung, 50, 563, 10.1515/hfsg.1996.50.6.563

Neto, 1995, C-13 solid-state nuclear-magnetic-resonance and fourier-transform infrared studies of the thermal-decomposition of cork, Solid State Nucl. Magn. Reson., 4, 143, 10.1016/0926-2040(94)00039-f

Neubauer, 2013, Molecular and cytological aspects of native periderm maturation in potato tubers, J. Plant Physiol., 170, 413, 10.1016/j.jplph.2012.10.008

Olsson, 2007, Lipase-catalyzed synthesis of an epoxy-functionalized polyester from the suberin monomer cis-9,10-epoxy-18-hydroxyoctadecanoic acid, Biomacromolecules, 8, 757, 10.1021/bm060965w

Pereira, 1988, Chemical-composition and variability of cork from quercus-suber L, Wood Sci. Technol., 22, 211, 10.1007/BF00386015

Pereira, 2007, Chapter 11—Cork products and uses, Cork, 243, 10.1016/B978-044452967-1/50013-3

Pinot, 2011, Cytochrome P450 metabolizing fatty acids in plants: characterization and physiological roles, Febs J., 278, 195, 10.1111/j.1742-4658.2010.07948.x

Pinto, 2009, Quercus suber and Betula pendula outer barks as renewable sources of oleochemicals: a comparative study, Ind. Crops Prod., 29, 126, 10.1016/j.indcrop.2008.04.015

Pollard, 2008, Building lipid barriers: biosynthesis of cutin and suberin, Trends Plant Sci., 13, 236, 10.1016/j.tplants.2008.03.003

Ribas, 1952, Étude sur la constitution chimique du liège, Chim. Industr., 68, 333

Ribas, 1940, Investigaciones sobre el corcho. I. Sobre la existencia de glicerina, Anal. Real Soc. Españ. Fís. Quím., 36B, 141

Riley, 1975, Evidence for covalently attached para-coumaric acid and ferulic acid in cutins and suberins, Plant Physiol., 56, 650, 10.1104/pp.56.5.650

Rios, 2014, The chemistry of Kielmeyera coriacea outer bark: a potential source for cork, Europ. J. Wood Wood Prod., 72, 509, 10.1007/s00107-014-0811-y

Santos, 2013, Cork suberin molecular structure: stereochemistry of the C-18 Epoxy and vic-diol omega-hydroxyacids and alpha,omega-diacids analyzed by NMR, J. Agric. Food Chem., 61, 7038, 10.1021/jf400577k

Santos, 2006, Glycerol-omega-hydroxyacid-ferulic acid oligomers in cork suberin structure, Holzforschung, 60, 171, 10.1515/hf.2006.028

Santos, 2014, Stereochemistry of C-18 monounsaturated cork suberin acids determined by spectroscopic techniques including H-1-NMR multiplet analysis of olefinic protons, Phytochem. Anal., 25, 192, 10.1002/pca.2491

Schmutz, 1996, Changing the dimensions of suberin lamellae of green cotton fibers with a specific inhibitor of the endoplasmic reticulum-associated fatty acid elongases, Plant Physiol., 110, 403, 10.1104/pp.110.2.403

Schreiber, 2010, Transport barriers made of cutin, suberin and associated waxes, Trends Plant Sci., 15, 546, 10.1016/j.tplants.2010.06.004

Schreiber, 2005, Wax and suberin development of native and wound periderm of potato (Solanum tuberosum L.) and its relation to peridermal transpiration, Planta, 220, 520, 10.1007/s00425-004-1364-9

Serra, 2009, CYP86A33-Targeted gene silencing in potato tuber alters suberin composition, distorts suberin lamellae, and impairs the periderm's water barrier function, Plant Physiol., 149, 1050, 10.1104/pp.108.127183

Sitte, 1959, Mischkorperdoppelbrechung der kork-zellwande, Naturwissenschaften, 46, 260, 10.1007/BF00632301

Sitte, 1962, Zum feinbau der suberinschichten im flaschenkork, Protoplasma, 54, 555, 10.1007/bf01252642

Soliday, 1979, Chemical and ultrastructural evidence that waxes associated with the suberin polymer constitute the major diffusion barrier to water-vapor in potato-tuber (Solanum-Tuberosum-L), Planta, 146, 607, 10.1007/bf00388840

Sousa, 2011, Novel suberin-based biopolyesters: from synthesis to properties, J. Pol. Sci. Part A Pol. Chem., 49, 2281, 10.1002/pola.24661

Stark, 1992, Nuclear-magnetic-resonance relaxation studies of plant polyester dynamics.2. Suberized potato cell-wall, Macromolecules, 25, 149, 10.1021/ma00027a025

Teixeira, 2010, Suberized cell walls of cork from cork oak differ from other species, Micros. Microanal., 16, 569, 10.1017/s1431927610093839

Torron, 2014, Polymer thermosets from multifunctional polyester resins based on renewable monomers, Macromol. Chem. Phys., 215, 2198, 10.1002/macp.201400192

Vandoorn, 1997, Abscission of flowers and floral parts, J. Exp. Bot., 48, 821, 10.1093/jxb/48.4.821

Vanwisselingh, 1888, Sur la paroi des celules subéreuses, Arch.Neérland. Sci. Exact. Natur., 22, 253

Wang, 2010, Isolation and identification of triglycerides and ester oligomers from partial degradation of potato suberin, J. Agric. Food Chem., 58, 1040, 10.1021/jf902854y

Yan, 1998, A WISE NMR approach to heterogeneous biopolymer mixtures: dynamics and domains in wounded potato tissues, Macromolecules, 31, 2600, 10.1021/ma9714880

Yan, 2000, Biosynthesis, molecular structure, and domain architecture of potato suberin: a C-13 NMR study using isotopically labeled precursors, J. Agric. Food Chem., 48, 3298, 10.1021/jf000155q

Yang, 2010, A distinct type of glycerol-3-phosphate acyltransferase with sn-2 preference and phosphatase activity producing 2-monoacylglycerol, Proc. Natl. Acad. Sci. U.S.A., 107, 12040, 10.1073/pnas.0914149107

Yokota, 1990, Process for producing omega-hydroxy fatty acids