Subcortical processing of speech regularities underlies reading and music aptitude in children

Dana L. Strait1, Jane Hornickel1, Nina Kraus1
1Auditory Neuroscience Laboratory, Northwestern University, Evanston, IL, USA

Tóm tắt

Abstract Background Neural sensitivity to acoustic regularities supports fundamental human behaviors such as hearing in noise and reading. Although the failure to encode acoustic regularities in ongoing speech has been associated with language and literacy deficits, how auditory expertise, such as the expertise that is associated with musical skill, relates to the brainstem processing of speech regularities is unknown. An association between musical skill and neural sensitivity to acoustic regularities would not be surprising given the importance of repetition and regularity in music. Here, we aimed to define relationships between the subcortical processing of speech regularities, music aptitude, and reading abilities in children with and without reading impairment. We hypothesized that, in combination with auditory cognitive abilities, neural sensitivity to regularities in ongoing speech provides a common biological mechanism underlying the development of music and reading abilities. Methods We assessed auditory working memory and attention, music aptitude, reading ability, and neural sensitivity to acoustic regularities in 42 school-aged children with a wide range of reading ability. Neural sensitivity to acoustic regularities was assessed by recording brainstem responses to the same speech sound presented in predictable and variable speech streams. Results Through correlation analyses and structural equation modeling, we reveal that music aptitude and literacy both relate to the extent of subcortical adaptation to regularities in ongoing speech as well as with auditory working memory and attention. Relationships between music and speech processing are specifically driven by performance on a musical rhythm task, underscoring the importance of rhythmic regularity for both language and music. Conclusions These data indicate common brain mechanisms underlying reading and music abilities that relate to how the nervous system responds to regularities in auditory input. Definition of common biological underpinnings for music and reading supports the usefulness of music for promoting child literacy, with the potential to improve reading remediation.

Từ khóa


Tài liệu tham khảo

Winkler I, Denham SL, Nelken I: Modeling the auditory scene: Predictive regularity representations and perceptual objects. Trends Cogn Sci. 2009, 13: 532-40. 10.1016/j.tics.2009.09.003.

Ahissar M, Nahum M, Nelken I, Hochstein S: Reverse hierarchies and sensory learning. Philos Trans R Soc Lond B Biol Sci. 2009, 364: 285-99. 10.1098/rstb.2008.0253.

Baldeweg T: Repetition effects to sounds: Evidence for predictive coding in the auditory system. Trends Cogn Sci. 2006, 10: 93-4. 10.1016/j.tics.2006.01.010.

Grill-Spector K, Henson R, Martin A: Repetition and the brain: Neural models of stimulus-specific effects. Trends Cogn Sci. 2006, 10: 14-23. 10.1016/j.tics.2005.11.006.

Chandrasekaran B, Hornickel J, Skoe E, Nicol T, Kraus N: Context-dependent encoding in the human auditory brainstem relates to hearing speech in noise: Implications for developmental dyslexia. Neuron. 2009, 64: 311-9. 10.1016/j.neuron.2009.10.006.

Pelucchi B, Hay JF, Saffran JR: Statistical learning in a natural language by 8-month-old infants. Child Dev. 2009, 80: 674-85. 10.1111/j.1467-8624.2009.01290.x.

Saffran JR, Aslin RN, Newport EL: Statistical learning by 8-month-old infants. Science. 1996, 274: 1926-8. 10.1126/science.274.5294.1926.

Stephan KE, Baldeweg T, Friston KJ: Synaptic plasticity and dysconnection in schizophrenia. Biol Psychiatry. 2006, 59: 929-39. 10.1016/j.biopsych.2005.10.005.

Ahissar M, Lubin Y, Putter-Katz H, Banai K: Dyslexia and the failure to form a perceptual anchor. Nat Neurosci. 2006, 9: 1558-64. 10.1038/nn1800.

Schulte-Korne G, Deimel W, Bartling J, Remschmidt H: Pre-attentive processing of auditory patterns in dyslexic human subjects. Neurosci Lett. 1999, 276: 41-4. 10.1016/S0304-3940(99)00785-5.

Evans JL, Saffran JR, Robe-Torres K: Statistical learning in children with specific language impairment. J Speech Lang Hear Res. 2009, 52: 321-35. 10.1044/1092-4388(2009/07-0189).

Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E: Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci. 2009, 29: 5483-93. 10.1523/JNEUROSCI.4153-08.2009.

Dean I, Robinson BL, Harper NS, McAlpine D: Rapid neural adaptation to sound level statistics. J Neurosci. 2008, 28: 6430-8. 10.1523/JNEUROSCI.0470-08.2008.

Pressnitzer D, Sayles M, Micheyl C, Winter IM: Perceptual organization of sound begins in the auditory periphery. Curr Biol. 2008, 18: 1124-8. 10.1016/j.cub.2008.06.053.

Wen B, Wang GI, Dean I, Delgutte B: Dynamic range adaptation to sound level statistics in the auditory nerve. J Neurosci. 2009, 29: 13797-808. 10.1523/JNEUROSCI.5610-08.2009.

Ulanovsky N, Las L, Nelken I: Processing of low-probability sounds by cortical neurons. Nat Neurosci. 2003, 6: 391-8. 10.1038/nn1032.

Dean I, Harper NS, McAlpine D: Neural population coding of sound level adapts to stimulus statistics. Nat Neurosci. 2005, 8: 1684-9. 10.1038/nn1541.

Muller JR, Metha AB, Krauskopf J, Lennie P: Rapid adaptation in visual cortex to the structure of images. Science. 1999, 285: 1405-8. 10.1126/science.285.5432.1405.

Suga N: Role of corticofugal feedback in hearing. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2008, 194: 169-83. 10.1007/s00359-007-0274-2.

Bidelman GM, Gandour JT, Krishnan A: Cross-domain effects of music and language experience on the representation of pitch in the human auditory brainstem. J Cogn Neurosci. 2009, 23: 425-434.

Kraus N, Skoe E, Parbery-Clark A, Ashley R: Experience-induced malleability in neural encoding of pitch, timbre, and timing. Ann NY Acad Sci. 2009, 1169: 543-57. 10.1111/j.1749-6632.2009.04549.x.

Gaab N, Tallal P, Kim H, Lakshminarayanan K, Archie JJ, Glover GH, Gabrieli JD: Neural correlates of rapid spectrotemporal processing in musicians and nonmusicians. Ann NY Acad Sci. 2005, 1060: 82-8. 10.1196/annals.1360.040.

Besson M, Schon D, Moreno S, Santos A, Magne C: Influence of musical expertise and musical training on pitch processing in music and language. Restor Neurol Neurosci. 2007, 25: 399-410.

Chandrasekaran B, Kraus N: Music, noise-exclusion, and learning. Music Percept. 2010, 27: 297-306. 10.1525/mp.2010.27.4.297.

Morais J, Periot A, Lidji P, Kolinsky R: Music and dyslexia. Int J Arts Technolog. 2010, 3: 177-194. 10.1504/IJART.2010.032563.

Zatorre RJ, Gandour JT: Neural specializations for speech and pitch: Moving beyond the dichotomies. Philos Trans R Soc Lond B Biol Sci. 2008, 363: 1087-104. 10.1098/rstb.2007.2161.

Patel AD: Why would musical training benefit the neural encoding of speech? The opera hypothesis. Front Psychol. 2011, 2: 142-

Forgeard M, Schlaug G, Norton A, Rosam C, Iyengar U: The relation between music and phonological processing in normal-reading children and children with dyslexia. Music Percept. 2008, 25: 383-390. 10.1525/mp.2008.25.4.383.

Overy K: Dyslexia and music. From timing deficits to musical intervention. Ann NY Acad Sci. 2003, 999: 497-505. 10.1196/annals.1284.060.

Huss M, Verney JP, Fosker T, Mead N, Goswami U: Music, rhythm, rise time perception and developmental dyslexia: Perception of musical meter predicts reading and phonology. Cortex. 2010

Anvari SH, Trainor LJ, Woodside J, Levy BA: Relations among musical skills, phonological processing, and early reading ability in preschool children. J Exp Child Psychol. 2002, 83: 111-30. 10.1016/S0022-0965(02)00124-8.

Ahissar M, Hochstein S: The reverse hierarchy theory of visual perceptual learning. Trends Cogn Sci. 2004, 8: 457-64. 10.1016/j.tics.2004.08.011.

Strait DL, Kraus N, Parbery-Clark A, Ashley R: Musical experience shapes top-down auditory mechanisms: Evidence from masking and auditory attention performance. Hear Res. 2010, 261: 22-29. 10.1016/j.heares.2009.12.021.

Kraus N, Chandrasekaran B: Music training for the development of auditory skills. Nat Rev Neurosci. 2010, 11: 599-605.

Share D, Jorm A, Maclean R, Matthews R: Sources of individual differences in reading acquisition. J Educat Psycholog. 1984, 76: 1309-1324.

Jorm A, Share D, Maclean R, Matthews R: Cognitive factors at school entry predictive of specific reading retardation and general reading backwardness: A research note. J Child Psychol Psychiatry. 1986, 27: 45-54. 10.1111/j.1469-7610.1986.tb00620.x.

Jöreskog KG: Lisrel 8: User's reference guide. 1996, Scientific Software International, Inc.: Lincolnwood, IL

Gefen D, Straub D, Boudreau MC: Structural equation modeling and regression: Guidelines for research practice. Communications of AIS. 2000, 4: 1-80.

Wechsler D: Wechsler Abbreviated Scale of Intelligence (WASI). 1999, San Antonio, TX: Harcourt Assessment

Achenbach TM, Ruffle TM: The child behavior checklist and related forms for assessing behavioral/emotional problems and competencies. Pediatr Rev. 2000, 21: 265-71. 10.1542/pir.21-8-265.

Baydar N, Brooks-Gunn J, Furstenberg FF: Early warning signs of functional illiteracy: Predictors in childhood and adolescence. Child Dev. 1993, 64: 815-29. 10.2307/1131220.

Torgeson JK, Wagner RK, Rashotte CA: Test of Word Reading Efficiency. 1999, Austin, TX: Pro-Ed

Mather N, Hammill DD, Allen EA, Roberts R: Test of Silent Word Reading Fluency. 2004, Austin, TX: Pro-Ed

Wagner R, Torgesen JK, Rashotte C: Ctopp: Comprehensive Test of Phonological Processing. 1999, Austin, TX: Pro-ed

Woodcock RW, McGre KS, Mather N: Woodcock-Johnson Psycho-educational Battery. 2001, Itasca, IL: Riverside, 3

Baddeley A: Working memory: Looking back and looking forward. Nat Rev Neurosci. 2003, 4: 829-39.

Gordon EE: Intermediate Measures of Music Audiation. 1986, Chicago: GIA Publications, Inc

Galbraith GC, Threadgill MR, Hemsley J, Salour K, Songdej N, Ton J, Cheung L: Putative measure of peripheral and brainstem frequency-following in humans. Neurosci Lett. 2000, 292: 123-7. 10.1016/S0304-3940(00)01436-1.

Chandrasekaran B, Kraus N: The scalp-recorded brainstem response to speech: Neural origins and plasticity. Psychophysiology. 2010, 47: 236-246. 10.1111/j.1469-8986.2009.00928.x.

Klatt D: Software for a cascade/parallel formant synthesizer. J Acoust Soc Amer. 1980, 67: 13-33.

Skoe E, Kraus N: Auditory brain stem response to complex sounds: A tutorial. Ear Hear. 2010, 31-

Hu L, Bentler PM: Fit indices in covariance structure modeling: Sensitivity to underparameterized model misspecification. Psycholog Method. 1998, 3: 424-453.

Goswami U: A temporal sampling framework for developmental dyslexia. Trends Cogn Sci. 2011, 15: 3-10. 10.1016/j.tics.2010.10.001.

Chan AS, Ho YC, Cheung MC: Music training improves verbal memory. Nature. 1998, 396: 128-10.1038/24075.

Ho YC, Cheung MC, Chan AS: Music training improves verbal but not visual memory: Cross-sectional and longitudinal explorations in children. Neuropsycholog. 2003, 17: 439-450.

Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T: Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci. 2005, 25: 10494-501. 10.1523/JNEUROSCI.1227-05.2005.

Friston K: A theory of cortical responses. Philos Trans R Soc Lond B Biol Sci. 2005, 360: 815-36. 10.1098/rstb.2005.1622.

Bajo VM, Nodal FR, Moore DR, King AJ: The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci. 2010, 13: 253-60. 10.1038/nn.2466.

Krumhansl CL: Perceiving tonal structure in music. Amer Scient. 1985, 73: 371-378.

Hannon EE, Snyder JS, Eerola T, Krumhansl CL: The role of melodic and temporal cues in perceiving musical meter. J Exp Psychol Hum Percept Perform. 2004, 30: 956-74.

Large EW, Jones MR: The dynamics of attending: How people track time-varying events. Psycholog Rev. 1999, 106: 119-159.

Repp BH, London J, Keller PE: Production and synchronization of uneven rhythms at fast tempi. Music Percept. 2005, 23: 61-78. 10.1525/mp.2005.23.1.61.

Snyder JS, Hannon EE, Large EW, Christiansen MH: Synchronization and continuation tapping to complex meters. Music Percept. 2006, 24: 135-146. 10.1525/mp.2006.24.2.135.

Jones MR, Moynihan H, MacKenzie N, Puente J: Temporal aspects of stimulus-driven attending in dynamic arrays. Psycholog Sci. 2002, 13: 313-319. 10.1111/1467-9280.00458.

Koelsch S, Siebel WA: Towards a neural basis of music perception. Trends Cogn Sci. 2005, 9: 578-584. 10.1016/j.tics.2005.10.001.

Vuust P, Ostergaard L, Pallesen KJ, Bailey C, Roepstorff A: Predictive coding of music - brain responses to rhythmic incongruity. Cortex. 2009, 45: 80-92. 10.1016/j.cortex.2008.05.014.

Trainor LJ, McDonald KL, Alain C: Automatic and controlled processing of melodic contour and interval information measured by electrical brain activity. J Cogn Neurosci. 2002, 14: 430-442. 10.1162/089892902317361949.

Koelsch S, Schroger E, Tervaniemi M: Superior pre-attentive auditory processing in musicians. Neuroreport. 1999, 10: 1309-1313. 10.1097/00001756-199904260-00029.

Tervaniemi M, Kruck S, De Baene W, Schroger E, Alter K, Friederici AD: Top-down modulation of auditory processing: Effects of sound context, musical expertise and attentional focus. Eur J Neurosci. 2009, 30: 1636-42. 10.1111/j.1460-9568.2009.06955.x.

Seppanen M, Brattico E, Tervaniemi M: Practice strategies of musicians modulate neural processing and the learning of sound-patterns. Neurobiol Learn Mem. 2007, 87: 236-47. 10.1016/j.nlm.2006.08.011.

Wong PC, Skoe E, Russo NM, Dees T, Kraus N: Musical experience shapes human brainstem encoding of linguistic pitch patterns. Nat Neurosci. 2007, 10: 420-2.

Strait DL, Kraus N, Skoe E, Ashley R: Musical experience and neural efficiency: Effects of training on subcortical processing of vocal expressions of emotion. Eur J Neurosci. 2009, 29: 661-8. 10.1111/j.1460-9568.2009.06617.x.

Gaser C, Schlaug G: Brain structures differ between musicians and nonmusicians. J Neurosci. 2003, 23: 9240-5.

Hutchinson S, Lee LH, Gaab N, Schlaug G: Cerebellar volume of musicians. Cereb Cortex. 2003, 13: 943-9. 10.1093/cercor/13.9.943.

Norton A, Winner E, Cronin K, Overy K, Lee DJ, Schlaug G: Are there pre-existing neural, cognitive, or motoric markers for musical ability?. Brain Cogn. 2005, 59: 124-34. 10.1016/j.bandc.2005.05.009.

Schlaug G: The brain of musicians. A model for functional and structural adaptation. Ann NY Acad Sci. 2001, 930: 281-99.

Schlaug G, Forgeard M, Zhu L, Norton A, Winner E: Training-induced neuroplasticity in young children. Ann NY Acad Sci. 2009, 1169: 205-8. 10.1111/j.1749-6632.2009.04842.x.

Schlaug G, Norton A, Overy K, Winner E: Effects of music training on the child's brain and cognitive development. Ann NY Acad Sci. 2005, 1060: 219-30. 10.1196/annals.1360.015.

Strait DL, Kraus N: Playing music for a smarter ear: Cognitive, perceptual and neurobiological evidence. Music Percept.

Musacchia G, Sams M, Skoe E, Kraus N: Musicians have enhanced subcortical auditory and audiovisual processing of speech and music. Proc Natl Acad Sci USA. 2007, 104: 15894-8. 10.1073/pnas.0701498104.

Parbery-Clark A, Skoe E, Kraus N: Musical experience limits the degradative effects of background noise on the neural processing of sound. J Neurosci. 2009, 29: 14100-7. 10.1523/JNEUROSCI.3256-09.2009.

Schon D, Magne C, Besson M: The music of speech: Music training facilitates pitch processing in both music and language. Psychophysiology. 2004, 41: 341-9. 10.1111/1469-8986.00172.x.

Wisbey AS: Music as the source of learning. 1980, Lancaster: M.T.P. Press, Ltd

Douglas S, Willatts P: The relationship between musical ability and literacy skills. J Res Reading. 1994, 17: 99-107. 10.1111/j.1467-9817.1994.tb00057.x.

Moreno S, Marques C, Santos A, Santos M, Castro SL, Besson M: Musical training influences linguistic abilities in 8-year-old children: More evidence for brain plasticity. Cereb Cortex. 2009, 19: 712-23. 10.1093/cercor/bhn120.

Overy K, Nicolson RI, Fawcett AJ, Clarke EF: Dyslexia and music: Measuring musical timing skills. Dyslexia. 2003, 9: 18-36. 10.1002/dys.233.

Banai K, Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N: Reading and subcortical auditory function. Cereb Cortex. 2009, 19: 2699-707. 10.1093/cercor/bhp024.

Hornickel J, Skoe E, Nicol T, Zecker S, Kraus N: Subcortical differentiation of voiced stop consonants: Relationships to reading and speech in noise perception. Proc Natl Acad Sci USA. 2009, 106: 13022-13027. 10.1073/pnas.0901123106.

Russo NM, Nicol TG, Zecker SG, Hayes EA, Kraus N: Auditory training improves neural timing in the human brainstem. Behav Brain Res. 2005, 156: 95-103. 10.1016/j.bbr.2004.05.012.

Song JH, Skoe E, Wong PC, Kraus N: Plasticity in the adult human auditory brainstem following short-term linguistic training. J Cogn Neurosci. 2008, 20: 1892-902. 10.1162/jocn.2008.20131.

Song JH, Nicol T, Kraus N: Test-retest reliability of the speech-evoked auditory brainstem response. Clin Neurophysiol. 2010

Gordon EE: Tonal and rhythm patterns, an objective analysis: A taxonomy of tonal patterns and rhythm patterns and seminal experimental evidence of their difficulty and growth rate. 1976, Albany: State University of New York Press

Strait DL, Kraus N, Skoe E, Ashley R: Musical experience promotes subcortical efficiency in processing emotional vocal sounds, in The neurosciences and music iii: Disorders and plasticity. Ann NY Acad Sci. Edited by: Dalla Bella S, Kraus N, Overy K, Pantev C. 2009, 209-13.

Ohnishi T, Matsuda H, Asada T, Aruga M, Hirakata M, Nishikawa M, Katoh A, Imabayashi E: Functional anatomy of musical perception in musicians. Cereb Cortex. 2001, 11: 754-760. 10.1093/cercor/11.8.754.

Pantev C, Oostenveld R, Engelien A, Ross B, Roberts LE, Hoke M: Increased auditory cortical representation in musicians. Nature. 1998, 392: 811-4. 10.1038/33918.

Trainor LJ, Desjardins RN, Rockel C: A comparison of contour and interval processing in musicians and nonmusicians using event-related potentials. Australian J Psycholog: Special Issue on Music as a Brain and Behavioural System. 1999, 51: 147-153.

Trainor LJ: Are there critical periods for musical development?. Dev Psychobiol. 2005, 46: 262-78. 10.1002/dev.20059.