Sub-Riemannian geodesics and heat operator on odd dimensional spheres

Mauricio Godoy Molina1, Irina Markina2
1Centre de Mathématiques Apliquées, École Polytechnique, Paris, France
2Department of Mathematics, University of Bergen, Bergen, Norway

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agrachev A., Boscain U., Gauthier J.-P., Rossi F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009)

Agrachev A., Sachkov Y.: Control Theory from the Geometric Viewpoint. Springer, Berlin (2004)

Alekseevsky D., Kamishima Y.: Pseudo-conformal quaternionic CR structure on (4n+3)-dimensional manifolds. Ann. Mat. Pura Appl. (4) 187(3), 487–529 (2008)

Baudoin F., Bonnefont M.: The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z. 263(3), 647–672 (2009)

Calin, O., Chang, D.-C., Greiner, P.: Geometric analysis on the Heisenberg group and its generalizations. AMS/IP Studies in Advanced Mathematics, vol. 40. American Mathematical Society, Providence; International Press, Somerville (2007)

Calin O., Chang D.-C., Markina I.: SubRiemannian geometry on the sphere $${\mathbb{S}^3}$$ . Canad. J. Math. 61(4), 721–739 (2009)

Calin O., Chang D.-C., Markina I.: Geometric analysis on H-type groups related to division algebras. Math. Nachr. 282(1), 44–68 (2009)

Capogna L., Danielli D., Pauls S.D., Tyson J.: An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem. Progress in Mathematics, vol. 259. Birkhäuser, Basel (2007)

Chang D.-C., Markina I.: Geometric analysis on quaternion $${\mathbb{H}}$$ -type groups. J. Geom. Anal. 16(2), 265–294 (2006)

Chang D.-C., Markina I., Vasil’ev A.: Sub-Riemannian geodesics on the 3-D sphere. Complex Anal. Oper. Theory 3(2), 361–377 (2009)

Chang D.-C., Markina I., Vasil’ev A.: Hopf fibration: geodesics and distances. J. Geom. Phys. 61(6), 986–1000 (2011)

Cheeger J., Ebin D.G.: Comparison Theorems in Riemannian Geometry. AMS Chelsea Publishing, Providence (2008)

Chow W.-L.: Über Systeme von linearen partiellen Differentialgleichungen erster Ordnung (German). Math. Ann. 117, 98–105 (1939)

do Carmo, M.: Riemannian geometry. Translated from the second Portuguese edition by Francis Flaherty. Mathematics: Theory & Applications. Birkhäuser Boston, Boston (1992)

Godoy M., Markina I.: Sub-Riemannian geometry of parallelizable spheres. Revista Matemática Iberoamericana. 27(3), 997–1022 (2011)

Gromov, M.: Carnot–Carathéodory spaces seen from within. In: Sub-Riemannian Geometry. Progress in Mathematics, vol. 144, pp. 79–323. Birkhäuser, Basel (1996)

Hurtado A., Rosales C.: Area-stationary surfaces inside the sub-Riemannian three-sphere. Math. Ann. 340(3), 675–708 (2008)

Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Reprint of the 1969 original. Wiley, New York (1996)

Liu, W., Sussmann, H.J.: Shortest paths for sub-Riemannian metrics on rank-two distributions. Mem. Am. Math. Soc. 118(564) (1995)

Margulis G., Mostow G.: Some remarks on the definition of tangent cones in a Carnot–Carathéodory space. J. Anal. Math. 80, 299–317 (2000)

Mitchell J.: On Carnot–Carathéodory metrics. J. Diff. Geom. 21, 35–45 (1985)

Montgomery R.: A tour of subriemannian geometries, their geodesics and applications. Mathematical Surveys and Monographs, vol. 91. American Mathematical Society, Providence (2002)

Rashevskiĭ P.K.: About connecting two points of complete nonholonomic space by admissible curve. Uch. Zapiski Ped. Inst. K. Liebknecht 2, 83–94 (1938)

Ritoré M., Rosales C.: Area-stationary surfaces in the Heisenberg group $${\mathbb{H}^1}$$ . Adv. Math. 219(2), 633–671 (2008)

Rosenberg S.: The Laplacian on a Riemannian manifold. An introduction to analysis on manifolds. London Mathematical Society Student Texts, vol. 31. Cambridge University Press, Cambridge (1997)

Sternberg, S.: Semi-Riemannian Geometry and General Relativity. http://www.math.harvard.edu/~shlomo/docs/semi_riemannian_geometry.pdf

Sussmann H.: Orbits of families of vector fields and integrability of distributions. Trans. Am. Math. Soc. 180, 171–188 (1973)