Study on the performance of different discharging devices of a continuous production system

Korean Journal of Chemical Engineering - Tập 39 - Trang 876-886 - 2022
Zhenya Duan1, Jie Wang1, Shujie Sun1, Wenchen Li1, Haodong Zhang1, Guoyue Qiao1, Junmei Zhang2, Jingtao Wang3
1College of Electromechanical Engineering, Qingdao University of Science and Technology, Qingdao, China
2College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
3School of Chemical Engineering and Technology, Tianjin University, Tianjin, China

Tóm tắt

Based on the developed continuous production system of sodium phenol carboxylation reaction, several types of discharging devices are proposed, which are suitable for the case where the transported particles are not easy to maintain a stable state in the transported fluid. Numerical simulations of the gas-solid two-phase flow characteristics and particle distribution were performed with DPM, and the particle retention ratio and fluid loss degree were proposed to investigate the performance of the discharging devices. The results of simulations and industrial experiments showed that a guide plate installed in the “B” discharging device can solve the accumulation problem, realize the efficient and continuous delivery of the particles, and maintain a uniform distribution of particles. This study can provide a reference for the design of a gas-solid two-phase discharging device, and guide the industrial experimental operation and modification of continuous production systems for sodium phenol carboxylation.

Tài liệu tham khảo

Y. Devani and P. S. Yelamarthi, J. Food Process. Eng., 42, (2019). G. Strenzke, R. Dürr, A. Bück and E. Tsotsas, Powder Technol., 375, 210 (2020). Z. Y. Duan, S. J. Sun, Z. J. Lan, Y. Wang, J. M. Zhang and J. T. Wang, Powder Technol., 372, 428 (2020). D. Geldart, Powder Technol., 7, 285 (1973). Y. Jin, H. F. Lu, X. L. Guo and X. Gong, Chem. Eng. Sci., 205, 319 (2019). N. M. Tripathi, N. Santo, A. Levy and H. Kalman, Powder Technol., 345, 190 (2019). D. Sun, Powder Technol., 390, 354 (2021). L. M. Gomes and A. L. A. Mesquita, Chem. Eng. Sci., 104, 780 (2013). S. Matsumoto, M. Kikuta and S. Maeda, J. Chem. Eng. Jpn., 10, 273 (1977). C. P. Narimatsu and M. C. Ferreira, Brazil. J. Chem. Eng., 18, 221 (2001). E. Heinl and M. Bohnet, Chem. Eng. Technol., 27, 1143 (2004). S. Laín and M. Sommerfeld, Int. J. Multiph. Flow, 39, 105 (2012). X. P. Chen, C. L. Fan, C. Liang, W. H. Pu and P. Lu, Korean J. Chem. Eng., 24, 499 (2007). C. Liang, X. P. Chen, C. S. Zhao, W. H. Pu and P. Lu, Korean J. Chem. Eng., 26, 867 (2009). B. Liu, Z. D. Wu, G. C. Yin and J. X. Liu, Mod. Manuf. Eng., 03, 93 (2018). O. Orozovic, A. Lavrinec, Y. Alkassar, J. Chen, K. Williams, M. G. Jones and G. E. Klinzing, Powder Technol., 364, 218 (2020). Y. F. Wang, Heibei Univ. Technol. (2018). W. P. Hong, B. H. Wang, Y. Liu and H. R. Li, Powder Technol., 375, 233 (2020). K. Sharma, S. S. Mallick and A. Mittal, Powder Technol., 362, 707 (2020). Y. Yang, P. Zhang, L. L. He, J. Y. Sun, Z. L. Huang, J. D. Wang and Y. R. Yang, Chem. Eng. Sci., 211, 115260 (2020). P. Zhang, Y. Yang, Z. L. Huang, J. Y. Sun, Z. W. Liao, J. D. Wang and Y. R. Yang, Chem. Eng. Sci., 229, 116083 (2020). Y. J. Xiong, X. L. Guo, X. Gong, W. J. Huang, J. C. Zhao and H. F. Lu, CIESC J., 60, 1421 (2009). J. W. Zhou, X. M. Han, S. X. Jing and Y. Liu, Chem. Eng. Res. Des., 157, 92 (2020). A. Bansal, S. S. Mallick and P. W. Wypych, Particul. Sci. Technol., 31, 348 (2013). H. Li and Y. Tomita, Powder Technol., 107, 144 (2000). H. Holmas, Chem. Eng. Sci., 65, 1811 (2010). H. Hadziahmetovic, N. Hodzic, D. Kahrimanovic and E. Dzaferovic, Teh. Vjesn., 21, 275 (2014).